Picture of athlete cycling

Open Access research with a real impact on health...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of Open Access research papers by Strathclyde researchers, including by researchers from the Physical Activity for Health Group based within the School of Psychological Sciences & Health. Research here seeks to better understand how and why physical activity improves health, gain a better understanding of the amount, intensity, and type of physical activity needed for health benefits, and evaluate the effect of interventions to promote physical activity.

Explore open research content by Physical Activity for Health...

Multi-physics simulation of friction stir welding process

Hamilton, Robert and Mackenzie, Donald and Li, Hongjun (2010) Multi-physics simulation of friction stir welding process. Engineering Computations, 27 (8). pp. 967-985. ISSN 0264-4401

[img]
Preview
PDF (Multi-physics simulation of friction stir welding process)
Mackenzie_D_Pure_Multi_physics_simulation_of_friction_stir_welding_process_Dec_2010.pdf - Preprint

Download (2MB) | Preview

Abstract

The Friction Stir Welding (FSW) process comprises of several highly coupled (and non-linear) physical phenomena: large plastic deformation, material flow transportation, mechanical stirring of the tool, tool-workpiece surface interaction, dynamic structural evolution, heat generation from friction and plastic deformation, etc. In this paper, an advanced Finite Element (FE) model encapsulating this complex behavior is presented and various aspects associated with the FE model such as contact modeling, material model and meshing techniques are discussed in detail. The numerical model is continuum solid mechanics-based, fully thermomechanically coupled and has successfully simulated the friction stir welding process including plunging, dwelling and welding stages. The development of several field variables are quantified by the model: temperature, stress, strain, etc. Material movement is visualized by defining tracer particles at the locations of interest. The numerically computed material flow patterns are in very good agreement with the general findings from experiments. The model is, to the best of the authors’ knowledge, the most advanced simulation of FSW published in the literature.