Picture of wind turbine against blue sky

Open Access research with a real impact...

The Strathprints institutional repository is a digital archive of University of Strathclyde research outputs.

The Energy Systems Research Unit (ESRU) within Strathclyde's Department of Mechanical and Aerospace Engineering is producing Open Access research that can help society deploy and optimise renewable energy systems, such as wind turbine technology.

Explore wind turbine research in Strathprints

Explore all of Strathclyde's Open Access research content

Multi-physics simulation of friction stir welding process

Hamilton, Robert and Mackenzie, Donald and Li, Hongjun (2010) Multi-physics simulation of friction stir welding process. Engineering Computations, 27 (8). pp. 967-985. ISSN 0264-4401

[img]
Preview
PDF (Multi-physics simulation of friction stir welding process)
Mackenzie_D_Pure_Multi_physics_simulation_of_friction_stir_welding_process_Dec_2010.pdf - Draft Version

Download (2MB) | Preview

Abstract

The Friction Stir Welding (FSW) process comprises of several highly coupled (and non-linear) physical phenomena: large plastic deformation, material flow transportation, mechanical stirring of the tool, tool-workpiece surface interaction, dynamic structural evolution, heat generation from friction and plastic deformation, etc. In this paper, an advanced Finite Element (FE) model encapsulating this complex behavior is presented and various aspects associated with the FE model such as contact modeling, material model and meshing techniques are discussed in detail. The numerical model is continuum solid mechanics-based, fully thermomechanically coupled and has successfully simulated the friction stir welding process including plunging, dwelling and welding stages. The development of several field variables are quantified by the model: temperature, stress, strain, etc. Material movement is visualized by defining tracer particles at the locations of interest. The numerically computed material flow patterns are in very good agreement with the general findings from experiments. The model is, to the best of the authors’ knowledge, the most advanced simulation of FSW published in the literature.