Picture of person typing on laptop with programming code visible on the laptop screen

World class computing and information science research at Strathclyde...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of Open Access research papers by University of Strathclyde researchers, including by researchers from the Department of Computer & Information Sciences involved in mathematically structured programming, similarity and metric search, computer security, software systems, combinatronics and digital health.

The Department also includes the iSchool Research Group, which performs leading research into socio-technical phenomena and topics such as information retrieval and information seeking behaviour.


Gauss-Hermite quadratures and accuracy of lattice Boltzmann models for non-equilibrium gas flows

Meng, Jian-Ping and Zhang, Yonghao (2011) Gauss-Hermite quadratures and accuracy of lattice Boltzmann models for non-equilibrium gas flows. Physical Review E: Statistical Physics, Plasmas, Fluids, and Related Interdisciplinary Topics, 83 (3). Article 036704. ISSN 1063-651X

PDF (Gauss-Hermite quadratures and accuracy of lattice Boltzmann models for nonequilibrium gas flows)
Zhang_YH_Pure_Gauss_Hermite_quadratures_and_accuracy_of_lattice_Boltzmann_models_for_non_equilibrium_gas_flows_14_Mar_2011.pdf - Preprint

Download (278kB) | Preview


Recently, kinetic theory-based lattice Boltzmann (LB) models have been developed to model nonequilibrium gas flows. Depending on the order of quadratures, a hierarchy of LB models can be constructed which we have previously shown to capture rarefaction effects in the standing-shearwave problems. Here, we further examine the capability of high-order LB models in modeling nonequilibrium flows considering gas and surface interactions and their effect on the bulk flow. The Maxwellian gas and surface interaction model, which has been commonly used in other kinetic methods including the direct simulation Monte Carlo method, is used in the LB simulations. In general, the LB models with high-order Gauss-Hermite quadratures can capture flow characteristics in the Knudsen layer and higher order quadratures give more accurate prediction. However, for the Gauss-Hermite quadratures, the present simulation results show that the LB models with the quadratures obtained from the even-order Hermite polynomials perform significantly better than those from the odd-order polynomials. This may be attributed to the zero-velocity component in the odd-order discrete set, which does not participate in wall and gas collisions, and thus underestimates the wall effect.