Picture of a black hole

Strathclyde Open Access research that creates ripples...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of research papers by University of Strathclyde researchers, including by Strathclyde physicists involved in observing gravitational waves and black hole mergers as part of the Laser Interferometer Gravitational-Wave Observatory (LIGO) - but also other internationally significant research from the Department of Physics. Discover why Strathclyde's physics research is making ripples...

Strathprints also exposes world leading research from the Faculties of Science, Engineering, Humanities & Social Sciences, and from the Strathclyde Business School.

Discover more...

Electron paramagnetic resonance and optical properties of Cr3+ doped YAl3(BO3)4

Wells, Jon-Paul R and Yamaga, Mitsuo and Han, Thomas P J and Honda, Makoto (2003) Electron paramagnetic resonance and optical properties of Cr3+ doped YAl3(BO3)4. Journal of Physics: Condensed Matter, 15 (3). pp. 539-547. ISSN 0953-8984

Full text not available in this repository. (Request a copy from the Strathclyde author)

Abstract

We report on the electron paramagnetic resonance (EPR) and optical absorption and fluorescence spectroscopy of YAl3(BO3)4 single crystals doped with 0.2 mol% of trivalent chromium. From EPR we determine that the Cr3+ ions reside in sites of essentially octahedral symmetry with an orthorhombic distortion. The ground state 4A2 splitting is determined to be 2(D2 + 3E2) 1.05 0.04 cm-1, where D and E are fine-structure parameters, and we can attribute this splitting to the combined effect of a low-symmetry distortion and spin-orbit coupling. The g-values and fine-structure parameters D and E of the ground state 4A2 are measured to be gx gy gz = 1.978 0.005, |D| = 0.52 0.02 cm-1 and |E| = 0.010 0.005 cm-1 respectively. From 10 K optical absorption we have measured the position and crystal-field splittings of the 2E, 2T1, 4T2, 2T2 and 4T1 states with the 4T2 and 4T1 levels appearing as vibronically broadened bands.