Strathprints logo
Strathprints Home | Open Access | Browse | Search | User area | Copyright | Help | Library Home | SUPrimo

Carbon monoxide entrapment in interstellar ice analogs

Collings, M.P. and Dever, J.W. and Fraser, H.J. and McCoustra, M.R.S. and Williams, D.A. (2003) Carbon monoxide entrapment in interstellar ice analogs. Astrophysical Journal, 583. pp. 1058-1062. ISSN 0004-637X

Full text not available in this repository. (Request a copy from the Strathclyde author)

Abstract

The adsorption and desorption of CO on and from amorphous H2O ice at astrophysically relevant temperatures has been studied using temperature programmed desorption (TPD) and reflection-absorption infrared spectroscopy (RAIRS). Solid CO is able to diffuse into the porous structure of H2O at temperatures as low as 15 K. When heated, a phase transition between two forms of amorphous H2O ice occurs over the 30-70 K temperature range, causing the partial collapse of pores and the entrapment of CO. Trapped CO is released during crystallization and desorption of the H2O film. This behavior may have a significant impact on both gas-phase and solid-phase chemistry in a variety of interstellar environments.

Item type: Article
ID code: 2938
Keywords: astrochemistry, infrared, molecules, nanoscience, Solid state physics. Nanoscience, Astronomy and Astrophysics, Space and Planetary Science
Subjects: Science > Physics > Solid state physics. Nanoscience
Department: Strathclyde Business School > Hunter Centre For Entrepreneurship
Faculty of Science > Physics
Related URLs:
Depositing user: Strathprints Administrator
Date Deposited: 22 Feb 2007
Last modified: 04 Sep 2014 11:50
URI: http://strathprints.strath.ac.uk/id/eprint/2938

Actions (login required)

View Item