Picture of athlete cycling

Open Access research with a real impact on health...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of Open Access research papers by Strathclyde researchers, including by researchers from the Physical Activity for Health Group based within the School of Psychological Sciences & Health. Research here seeks to better understand how and why physical activity improves health, gain a better understanding of the amount, intensity, and type of physical activity needed for health benefits, and evaluate the effect of interventions to promote physical activity.

Explore open research content by Physical Activity for Health...

The relative roles of fishing (top-down) and climate-driven changes in productivity (bottom-up) on changes in the structure of the food web in the North Sea

Heath, Michael and Steele, J.H. (2009) The relative roles of fishing (top-down) and climate-driven changes in productivity (bottom-up) on changes in the structure of the food web in the North Sea. In: Deliverable 3.5 Report to the EU-RECLAIM project (REsolving CLimAtic IMpacts on fish stocks, 044133 (SSP8)): The relative roles of fishing and climate-driven changes in productivity and predator prey overlap in observed changes in the structure of upper t. UNSPECIFIED, pp. 5-80.

Full text not available in this repository. Request a copy from the Strathclyde author

Abstract

We developed an ecosystem model for the North Sea to simulate the flow of nutrient up the food web from dissolved inorganic matter to fisheries yield and production of birds and mammals, and the dependence for this flux on environmental conditions. The key environmental drivers were temperature, vertical mixing, advection by ocean inflow and the concentrations of dissolved inorganic and particulate organic nutrient in inflow waters, freshwater discharges and dissolved nutrient concentrations in river waters, and atmospheric deposition of nutrients. We identified four distinct regimes of environmental conditions in the North Sea between 1960 and 2005, and analysed the changes in fisheries yield and the maximum sustainable yields that these have caused. Finally, we subjected the model to projected future environmental forcing based on climate change expected to occur by 2100 and analysed the changes in yield and ecosystem fluxes that these were likely to cause.