Picture of athlete cycling

Open Access research with a real impact on health...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of Open Access research papers by Strathclyde researchers, including by researchers from the Physical Activity for Health Group based within the School of Psychological Sciences & Health. Research here seeks to better understand how and why physical activity improves health, gain a better understanding of the amount, intensity, and type of physical activity needed for health benefits, and evaluate the effect of interventions to promote physical activity.

Explore open research content by Physical Activity for Health...

Swelling of glass-fibre reinforced Polyamide 66 during conditioning in water, ethylene glycol and antifreeze mixture

Thomason, James and Porteus, G. (2011) Swelling of glass-fibre reinforced Polyamide 66 during conditioning in water, ethylene glycol and antifreeze mixture. Polymer Composites, 32 (4). pp. 639-647. ISSN 0272-8397

[img] Microsoft Word (swelling of glass fibre-reinforced polyamide 66 during conditioning in water, ethylene glycol and antifreeze mixture)
Thomason_JL_Pure_Swelling_of_glass_fibre_reinforced_Polyamide_66_during_conditioning_in_water_ethylene_glycol_and_antifreeze_mixture_Mar_20102010.doc - Preprint

Download (626kB)


The weight and dimensional changes of injection molded glass-fiber reinforced polyamide 66 composites based on two glass fiber products with different sizing formulations and unreinforced polymer samples have been characterized during conditioning in water, ethylene glycol, and a water-glycol mixture at 508C and 708C for a range of times up to 900 h. The results reveal that hydrothermal ageing in these fluids causes significant changes in the weight and dimensions of these materials. All conditioned materials showed a time dependent weight and dimension increase. The change observed in water could be well modeled by a simple Fickian diffusion process; however, the absorption process followed a more complex pattern in the other conditioning fluids. It was not apparent that changing the glass fiber sizing affected the dimensional stability of the composites under these relatively mild conditions. There was a strong correlation between the swelling of these samples and the level of fluid absorption. The composites exhibited highly aniosotropic levels of swelling. These effects were well in line with the influence of fibers on restriction of the matrix deformation in the fiber direction. The polymer and composite swelling coefficients correlated well with data previously obtained at higher conditioning temperatures.