Picture of athlete cycling

Open Access research with a real impact on health...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of Open Access research papers by Strathclyde researchers, including by researchers from the Physical Activity for Health Group based within the School of Psychological Sciences & Health. Research here seeks to better understand how and why physical activity improves health, gain a better understanding of the amount, intensity, and type of physical activity needed for health benefits, and evaluate the effect of interventions to promote physical activity.

Explore open research content by Physical Activity for Health...

The influence of thermo-oxidative degredation on the measured interface strength of glass fibre-polypropylene

Yang, Liu and Thomason, James and Zhu, W.Z. (2011) The influence of thermo-oxidative degredation on the measured interface strength of glass fibre-polypropylene. Composites Part A: Applied Science and Manufacturing, 42 (10). pp. 1293-1300. ISSN 1359-835X

[img] Microsoft Word
Thomason_JL_Pure_The_influence_of_thermo_oxidative_degredation_on_the_measured_interface_strength_of_glass_fibre_polypropylene_May_2011.doc - Preprint

Download (426kB)

Abstract

It has previously been found that thermal-oxidative degradation of the matrix can strongly affect the apparent interfacial shear strength (IFSS) in glass fibre-polypropylene (GF-PP) measured using the microbond method. In this work, different approaches were employed to further investigate this phenomenon. Hot-stage microscopy was used to establish a profile for dimensional loss of molten PP microdroplets during heat treatment. Under a given thermal load this reduction was found to be related to the initial droplet dimensions. A nanoindentation test was employed to directly probe the mechanical properties of the PP microdroplets, which also exhibited strong dimensional dependence in terms of property deterioration caused by the degradation. Characterisation of thermal mechanical properties and crystallinity was carried out on macroscopic PP samples to assist in elucidating how the polymer degradation affected the measured IFSS. Comparison of the degraded and non-degraded PP microbond samples for IFSS clearly showed the effect of thermal-oxidative degradation on adhesion.