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This paper presents a general framework for the dexlopment of shape-based approaches
to low-thrust trajectory design. A novel shaping m#éod, based on a three dimensional
description of the trajectory in spherical coordinaes, is developed within this general
framework. Both the exponential sinusoid and the imerse polynomial shaping are
demonstrated to be particular two-dimensional case®f the spherical one. The pseudo-
equinoctial shaping is revisited within the new franework, and the non-osculating nature of
the pseudo-equinoctial elements is analyzed. A twsiep approach is introduced to solve the
time of flight constraint, related to the design oflow-thrust arcs with boundary constraints
for both spherical and pseudo-equinoctial shapingThe solution derived from the shaping
approach is improved with a feedback linear-quadraic controller and compared against a
direct collocation method based on Finite Elements Time. The new shaping approach and
the combination of shaping and LQ controller are tsted on three case studies: a mission to

Mars, a mission to asteroid 1989ML, a mission to coet Tempel-1 and a mission to Neptune.

Nomenclature

A = homogeneous part in the equations of motion

Ag = submatrix ofA

a =  acceleration vector of the trajectory parameéstibyt
a =  acceleration vector of the trajectory parameeatibys
a =  coefficients in the shaping functiéh

B =  control matrix coefficient in the equations obtion

! PhD candidate, Department of Aerospace Engineefames Watt South Building, University of Glasgow.
2 Senior lecturer, Department of Aerospace Engingerlames Watt South Building, University of Glasgo



—h

[(o}}

Ox

Oi

initial and final conditions on the value of thecond derivative of R aril
functions defining the osculating conditions

geometric curvature

time equation scalar function

solution of the matrix Riccati differential edicen

equinoctial element

pseudo-equinoctial element correspondinfy to
coefficient in the shaping functioh

modified equinoctial element

equinoctial element

pseudo-equinoctial element corresponding to

generic function

coefficient in the shaping functiog

modified equinoctial element

Hessian matrix

Hamiltonian function

equinoctial element

pseudo-equinoctial element corresponding to

angular momentum vector of the trajectory patanizeed byt
angular momentum vector of the trajectory pataniwed bys
coefficient in the shaping function of

identity matrix of rank 3

open interval of time

closure of;

cost function

equinoctial element
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pseudo-equinoctial element correspondinig to

coefficient in the shaping function
longitudinal anomaly, rad

number of revolutions

null matrix of size3x 3

Landau symbol of asymptotic domination
optimization problem

adjoint variable vector

semi-latus rectum

weight matrix

generalized coordinate vector

function shaping

radius vector, km

radius, km

sets of admissible shaping functions
generic parameter used to describe the trajector
shaped time of flight function
time of flight violation

time of flight function

time

control acceleration vector

velocity vector of the trajectory parameterigd, km/s

velocity vector of the trajectory parameteribgds
component of in Cartesian coordinates, km/s
three dimensional space without the origin

set of admissible state vectors

state vector

Cartesian coordinate, km



y =  Cartesian coordinate, km

z =  Cartesian coordinate, km

a = azimuthal angle in the tangential-normal refeseframe,rad
y =  flight path angle, rad

Av =  velocity increment resulting from the contratis

0 =  elevation angle, rad

0 = azimuthal angle in the spherical reference franae

A =  shaping parameters

U =  gravitational constant, kits®

13 =  perturbation of the state vector

v = perturbation of the control vector with the lmzed equations of motion
@ =  function shaping

1) = elevation angle in the spherical reference franae

@ = phasing angle, rad

x =  scalar function shaping

Q, = set on whichx is defined

Subscripts

f = final value

h =  component along the angular momentum

[ = initial value

I =  corresponding to the linearized problem

n =  component along the normal vector

r =  corresponding to the position components inflidestate vector
r =  component along the radial vector

real =  corresponding to the physical, nonlinearizedjam

t = along the velocity vector

\ =  corresponding to the velocity components inglidestate vector
6 =  component along the transversal vector



1) =  component along the base vector correspondititetelevation
0 =  corresponding to the reference trajectory
1 =  corresponding to the augmented linearized systieequations of motion

Superscripts

T =  transpose of a matrix

o' =  derivative with respect t®

o" = double derivative with respect$o
* =  optimal

l. Introduction

Up to now, electric propulsion has been successfudlgd in a number of missions, both commercial and
scientific; remarkable examples are Deep Spacq &arjfd SMART-1 [2]. The savings in propellant massulting
from the high specific impulse makes this propuisgystem attractive for a wide range of hifyhh missions.
Examples of ongoing or future missions are the NAS&wn spacecraft, equipped with an ion thrusteat th
currently heading towards the asteroid Vesta [3, Japanese (JAXA) mission Hayabusa to the astéakdwa
which carries four electron cyclotron resonanceteleengines on board [4] and the European Spanéy (ESA)
cornerstone mission BepiColombo that will use selactric propulsion to propel the spacecraft taddey [5]. The
potential savings in propellant comes at the pata more difficult and complex trajectory desiggompared to
missions using chemical propulsion, the added aliffy is to optimize continuous thrust profiles teed of
optimizing a finite set of impulses. This differenmakes analysis of low thrust missions mathenibtieand

computationally more challenging.

During the preliminary assessment of a new missioncept, a large number of scenarios need to be
investigated. As a result, the associated seamtespan be very large. For instance, launch amdhbwindows can
each span several years. The assessment of difarenarios over a wide range of design parametersres the
efficient generation and evaluation of a large nemif feasible trajectories. Finally, common tecjuas for low-
thrust trajectory design [6] require some form witial guess. However, the generation of suitabi@al guess

trajectories during the preliminary mission despdrase is not trivial.



In order to make this step more efficient, modelirajectories analytically has proven to be a \eabption.
Markopoulos [7] found a class of planar trajectsrigith a specific expression for the thrust, whieh calls
Keplerian thrust, with which the trajectory can &epressed analytically while imposing boundary t@ists.
Markopoulos’s results remained however academic vaere not applied to the systematic design of feams
Petropoulos and Longuski [8] proposed to model tbrust trajectories with exponential sinusoids althin the
thrust profile from the dynamics, with the aim @&signing propellant-optimal low-thrust gravity-asdrajectories.
Petropoulos and Longuski’'s model is planar; theddtglane components are only approximated. Moredke
constraints on the total time of flight cannot ladisfied together with the boundary constraintstlom velocity
vector. However, the exponential sinusoids turngdto provide valuable solutions in the pure pdoypoint low-
thrust problem. Wall and Conway [9] introduced awerse polynomial to model the radius of a plargettory in
polar coordinates, under the assumption of a viriabbounded tangential thrust. The advantageisfapproach
compared to Petropoulos and Longuski's is the pdigito satisfy all boundary conditions. Later 2008, Wall
extended their approach to cylindrical coordindfé€y. De Pascale and Vasile proposed to shapedhations of
the non-singular equinoctial elements due to sipatturbations [11]. This shaping approach could ehadldree-
dimensional trajectories and satisfy boundary, tah#ight and thrust constraints. Furthermoreyéts demonstrated

that the initial guess was good enough to initeabpth direct and indirect methods [12].

This paper presents a new approach to quickly gémea large number of suitable initial guess lomsh
transfer trajectories. The method consists of tigps the fast generation of transfers using alrsheagping method,
followed by the improvement of the shaped trajectioy a linear quadratic controller. For the firséms a new
shaping approach is proposed that models trajeston three dimensions using a parameterizatiosphrerical
coordinates. The satisfaction of the constrainttlom time of flight is treated with a two step apmb: a 1-
dimensional Newton loop over one of the shapingqmpeters is applied first, if the Newton loop failse time

evolution is re-shaped such that the constraigaiisfied.

The paper is structured as follows: a general nmasttieal framework to describe trajectories with gihg
methods is presented first; a novel shaping appraathen derived within this framework and tesbeda number
of cases. The following section presents a linemdgatic (LQ) controller to locally improve the glea solution,
and includes some theoretical results on the ofityref the shaped solution and LQ refinement. Tinal section
demonstrates the effectiveness of the combinatioshaping and LQ controller on three test casesission to

Mars, a mission to the near Earth asteroid 198%injssion to comet Tempel-1 and a mission to Neptun



. Low-thrust trajectory shaping

A. General framework

The main motivation for the shaping method is tawlfsolutions to a controlled dynamical system,s$gtig
some conditions on the state vector, by avoidint tlee numerical integration of the equations otioroand the
solution of an optimal control problem. The undertyidea is to first assign a parameterized shapthe state
vector and then compute the control law. This psscis normally known as an inverse control probliem

aeronautics [13]. In mathematical terms, givenciwetrolled dynamical system:

1)

{\(/Z:H){{H; ij (x.u)

wherem is the dimension afi , n the dimension ok andW O R", one needs to perform the inverse transformation:

Q, - R"
X u=g,(x)

OxOW, g, :{ 2)
such that the control law is obtained as a function of the state vegtand its derivative . In the following it is
assumed thain< n andf, represents the functiohwhenx is given. Note thatOR™, which means that no

constraints on the control are applied at thisestag

One of the main issues when shaping the state v&ci® the definition of the sef), . In fact, a necessary
condition to have a physical control vectois that the image oR™ underfy is included inQ,, orim f, 0 Q,, for
all state vectorg, and the corresponding sufficient condition ig tie functiongy is defined o2, = Im( fx) I gx
exists and is defined oQ, = Im(fx) then the compositiorg, - f, is bijective (both one-to-one and onto) and
thereforef, is injective (one-to-one) arg), is surjective (onto). This property means thattfer same state vectors,
two different control vectors will yield differemterivatives of the state vector, which will be gaserified in the
scenarios that will be presented later in this papepractice, given a coordinate system, a shippiathod and a set
of dynamic equations, it is required tHatis surjective, and thai, is defined onlm(fx). If, furthermore,g, is

bijective, then the control law is unique.

The dynamic equations in this paper are the ongsritking the three dimensional motion of a spadesteject
to the gravitational pull of a central body andatoontrollable acceleration. The spacecraft andémgral body are
assumed to be point masses, with the mass of theesmft negligible compared to the one of the gilafhe

gravity constant of the central mass is denoteg.dyo assumption is made on the propulsion systamithrust



magnitude and the propellant consumption are obtafrom the control law once an initial spacecnaétss and a

value for the specific impulse are provided.

Independent of whether Cartesian, spherical coatéf Keplerian or Equinoctial elements are used to

parameterize the motion of the spacecraft, thetemsaof motion around the central body can be esged as:

x=A(x)+B(x)u ®)

With the number of states=6 and the number of control®i=3. The space in which the state vectorare
defined,W, is an open subset @&°. Note that f_ in this case is affine. The physics of the probkm® such that
each of the three components of the control veuisran effect on the state vector, thyss injective. Im( fx) is a
three dimensional manifold &°, which can be defined by three equations of thpe t, (x) =0. A general

expression forg, can be given by:
B(x)' [x-A(x)] @)

-1
Note that[B(x)T B(x)} B(x)T is the Moore-Penrose pseudo-inverseByfx) . It will be shown that for
allx OW B(x)T B(x) is invertible andy, is surjective sincey is affine and each component of the control vector

will be influenced by at least one componentof

Finally, the particular type of dynamical systeratttvill be considered in this paper is described gt of three
second-order differential equations. In that céiseee independent coordinatgsand their respective derivatives
g define the state vectot=[q, q]" . The vectorq represents the state of the spacecraft in thdguoation space

expressed either in Cartesian or spherical cootesna

Let us assume that the trajectory is parametetiged variables, defined on a closed intervgy s] and that
there is a smooth mapping between the ttnamds. Denoting by a prime the derivatives with respiecs, one
would have the relationshig(s)=1/{( 9 ands(9=-t(9/( & $)3. Hence, the state vector becomes[q, $9']"
and the dynamical equations can be written as:

Sq'+9'=A(q, 9)+B(a, §)u ()

This kind of reparameterization was first used uBgarte in 1972 [14] for the purpose of stabilizthe
numerical integration of equations of motion. Tlemeral formulation in Egs. (4) and (5) will be shated into two

specific shaping approaches in spherical coordénatel Cartesian coordinates.

B. Spherical Shaping



The trajectory of the spacecraft in the three disimral space is defined by the spherical coordiate

(r.6,4)0R" x Z]SZ XK%T+%]

wherer is the distance from the central bodys the azimuthal angle anrdis the elevation angle (see Fig. 1). If the

variation of the position is taken with respectitoe, the state vector [s, 6, ¢,r’,6'?,¢]T .

X

Fig. 1 lllustration of the spherical coordinate sytem

If, instead, the anglé is taken as the parameteto parameterize the trajectory, thersR(6),¢ = ®(6) and
t :T(H) . The transformation betwe¢mnd & holds if there is a smooth one-to-one mapping betwandé, which
implies thatd is strictly monotonous with respect to time. Thate vector becomesg =[r,t,4,r't',¢']" where the
prime represents the derivative with respecl. this parameterization is non-singular if the paesd the origin are
excluded from the set of admissible positions. Meeg, the angle? will account for then, revolutions of the
trajectory. Hence, the spatéis defined asv =R, X[Hi 6, +2n 7T:|><(—7T/2 1/ 3><R3. The equations of motion

in an inertial reference frame are:
2 = _lu_ +u (6)

where the position vector is= [r cosg co 1, si¥ cagr, s';tn]T . Since the position vector is parametrized with

then:

2
- dr

0 (0§ r

TR %

with @=1/t' andd = -t"/t"*. Expanding Eq. (7), one can obtain the dynamigsiesn forx as in Eq. (5). Finally,
the control vector is obtained straight from Eq), @fter having inserted the expressionr ads a function of the

spherical coordinates.



If the geometrical trajectory is given, then ondl steeds to set the evolution of the spacecrafingl that
trajectory in order to define completely the phgsicansfer. This is done by providirg as a function o®. Then
one can havé , and through (7), the control profileis extracted. Therefore, if the shape of a trajscis fixed,
then only one degree of freedom remains to fix tlamsfer. However, it is not straightforward to fe¢ time

evolution a priori, such that the final control fil®is systematically close to optimal.

A simple relationship is established here betwéeand the normal component of in the tangential-normal-
out-of-plane frame. This relationship turns outhie useful to set a ‘shape’ for the time evoluticasdd on

reasonable considerations.

The velocity vectow is expressed as:

V= ar_ gi (8)
dt do
and the acceleration vecta@as:
gz Vs d g dY ©9)

dt & do?

2

2
In the following, the vectorsg—; and % will be called v and a respectively. They are entirely described by

the geometry of the trajectory and thereforerpy and their first and second derivatives. The vedtenr OV is

also introduced, its magnitude is noted

The unit vectors(e, g, ) defining the tangential-normal-out-of-plane refere frame are introduced and the

equations of motion are projected onto it:

rﬁzer [& +6vie+ 07 dle

u(
u=lu = %er (& + 0% alle, (10)
r
t (*are,

The second and the third componentidh (10) are of interest because they only invoffewhile ¢ is absent.
The projection on the out-of-plane component dagspnovide much information. However the normal pament

of u can be rewritten as:

10



L Lahov
u :Ferﬂ;ﬁezM (11)

n =~

Sincee, [& = cog andh = ricosy, one obtains:

. u
Dg* = L4 (12)
r’° cog
where:
N R
D—?aE@hDv) (13)

This expression depends uniquely BnR’, R”, @, @ and ®”, so on the pure geometrical shape of the
trajectory. Finally, if one uses the physical vétpe, acceleratiom and angular momentuh then:
alfhOv) =(6v+6°a) foh06v)

= 94a[Qﬁ 0 v) 4

andD can then be rewritten as:

D :#amhmv) (15)

The quantityD has the sign oﬁ[ﬂh Dv) , which is the same as the sign&jﬁﬁ Dv) , thusD is positive when the

trajectory is curved towards the central body.

The scalaD is independent of the reference frame, and caexpeessed using the components of the position,

velocity and acceleration in any one reference &abbsing the radial-orthoradial-out-of-plane cooade system
D:W%j%a_

o}

(e.e.¢), one hasy, =0, such that

Itis shown in Appendix A that anda are written in(e,, g, ¢) as

v r
V=, = ¢ *+cosy (16)
V 0
h

11



r”—r(¢’2+co§¢)

A , @" —sing cosp
2 g I 17
(g7 +cosg +rg ooty (17)

(cosp(¢" - sirp cop)+ 2si(¢?+ cogp))

Q.
I

:p.)z Os:.)z o
I

r

J@'? +cos ¢

The expression fdp becomes then:

. o0, @"—sing cosp 2

D=—r"+2—+r'¢/ T—— T — T 4y +cog 18
r ¢ ¢'*+cos¢ (¢ ¢) (18)

The functionsR, @ andT are the respective functions that shape andt; the corresponding control profile can

be obtained, along with th&v and propellant consumption, given the spacecnitfal mass and specific impulse.

FunctionsR and® model the pure geometry of the trajectory, while functionT shapes the time evolution along
the trajectory. It is assumed that the shapingtfansR, @ andT belong to sets of admissible functids S, and

Sr that are twice continuously differentiable. Nofwthie functionT, defined through its derivative:

T = DR’ (29)
\ u

is used to shapk then by plugging it into (12), one finds that ttntrol vector corresponding to the geometrical

trajectory defined byR and® will have no component normal to the tangentiahgl of the trajectory (i.eu, =0).
Note that shaping of the derivativE instead of T is not an issue because the origin of time casdteas an
additive constant t@. Eq. (19) requires the conditiob >0 in order to have a real time of flight. Geometlica
speaking, the latter condition means that the ptefamed by andh (or in other words by the admissible control
vectors) divides the space in two, and the trajgataust be curved towards the half-space contaittiegcenter of
gravity. In fact, if the acceleration vector pomt®wards the opposite half-space, a control corapboutside of
the separating plane would be required to balaheegtavitational pull of the central body, therefagr# 0 (see

Fig. 2).

12



Fig. 2 lllustration in 2D of the condition D > 0. The trajectory is the arc, the velocity vector isaligned with
the tangent (dashed line).

In the particular case of a two dimensional trajegtone obtains:

_ cR
cosy

(20)

wherec is the algebraic curvature of the trajectory, thus 0 if the curvatures is positive. The time of flight and

Av corresponding to the shaped trajectory are ohdabneintegrating respectively'and |u|T' over the interval

(6 6, +n7].

It should be noted that by shaping the time evotufi with the expression in Eq. (19R and @ define
completelyT' and the time of fIighT(Hf)—T(Hi) . This method can be problematic when a constairthe time
of flight exists. However it is generally difficutb find a priori a shaping functioh in such a way to obtain a
control that is near optimal, i.e., interestingpiractice. Indeed, iT was a completely arbitrary function, then the
forces required to keep the spacecraft on the pagbcribed byR and @ can have the same or a higher order of
magnitude than the one of the gravitational pull,which case the transfer cannot be qualified asthyust
anymore. Using an expression fot as in (19) will result in reasonable thrust pesil especially when an efficient

change in the semi-major axis is sought for.

Rand® can be in any function space such tRat 0 and -77/2<® < 77/2. It is judicious, however, to choose
expressions for which the boundary constraintshenpiosition and velocity can be computed analyiicklaving
the flexibility to impose boundary constraints foitial guesses both on position and velocity hefpsmprove the
convergence of optimizers and more importantly élph to generate feasible solutions that providgoad

estimation of the required thrust level, time it and propellant consumption. The boundary ciok are:

13



R(6)=R R(6, +2n7)=R,
®(6)= o(0, +2n7)= @,
, D, , _ R;cosp
T'(6)= R(i/(:i T (9f +2nr7r)— fvm : (21)
R(6)=v, R’(Qf +2n n):\4,
cp'(ei):% ' (0, +2n,n):%‘

The boundary conditions OR' are expressed as the boundary conditionRbmandd” :

R(8)+a ' (g)=G
{R"(ef Jea,o(8,)=C, (22)

Where
oo R®'(6,, )
" 076, ) +cos o8, ) )
—_ Vi st Vot
R/f (Vfi/f / Rif +cosZCDi It )
and

NG i s
G =l e, (0, o wsofa, ) - o, L o)

(24)

_ﬂ00§¢i/f Vri2/f R [Vz codd J_Yi/f \Yi sin®, cosh,
It if

=D U o ity By >
R

2

Ve R . V2

6i/f /f ivf Rf ¢I2/f +C0§q)”f
/f

There are therefore ten boundary conditions: fouthe radius, four on the elevation angle and tmtuned

between the two. Thus, the functioRsand @ must have at least 10 free parameters to satiefybbundary

conditions. If there are exactly 10 parameterstithe of flight is uniquely defined.

A relatively wide set of shaping functions fRrand® can be used such that the boundary conditionsbean
satisfied analytically. The boundary conditions mgsed in (21) and (22) suggest that functionshef form
R(6) = Zn: a R(6) and d(8) = Zm;qqak(e) are interesting because their derivatives renia@at combinations of the

k=1 k=1

unknown coefficients and therefore the boundaryd@mns can be solved by inverting a 10 by 10 matxote that

one needs to have=4, m=4 and n+ m=10.
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However there is a wider set of functions thatwalkatisfying constraints in such a way. If one ddeis those
functions that can be written &&(6) = Rj[z aq Fg(e)j and ®(6) = dJO(ZquJk(G)] whereR, and®, are functions
k=1 i=1
that can be analytically inversed, then the boundeonditions onR and @ need to be rewritten as

Zn:akRK(ei/f): Fgl( Figf) and Zm:b,pk(ei,f):qngl(dai,f) , those orR’ and®’ become:
k=1 i=1

Zn:akR: (ei/f ) = : Vi =— vril’f
= %'(Z%R(ei/f)j I:2‘)(F§ ( R”))

"~ 25
Zm:qu)k. (ei/f): Vour /R = Ve / R (@3)

= q:o’[iqq:k(ei,f)j CHCH)

Finally the boundary conditions dn in (22), where the second derivativesRdnd® are present, become

n

SR (6,) (% a 700, £ # #le)] 08(E ado)]

k=1

(26)

m

+a,, [Zw (8) 5 (z b®, (6, )j +[z ho, (6, )JZ % [z mk(gi,f)n -,

i=1
And after rearranging, the following linear equatidn (a,) and(b,) are obtained:

kzi;akR: (HV,)EI%'( rgl( R ))+ai/fiZ:: o, (gi/f)ljbol (GJ[,l(dDi,f )):

=c, - Vit Vji/f/Fﬁf

SRS L. 27)
SR(r R e

®; (03(®.)

Therefore one has a relatively wide array of paksds for the shaping functions and boundary dtods on

position and velocity can be satisfied by invertinj0 by 10 matrix.

In the test cases in this pap8,is the set of functions expressed in a form teaeminiscent of the expression
of the radius in Keplerian elements, éhds such tha® oscillates:
1

R:ao+a1.9+,512.92+(as+ ap)cosf+( a+ af) sird (28)
@ = (I, + bo)cosd + (b, + bp) sirg

The motivation for this choice is that the minimdinnust arc is the Keplerian arc. No singularity was
encountered foR in the test cases of this paper, the value fordakeis remained strictly positive. In the same way

@ always remained within the intervérl—n/z;n/z) . Note that, in Eq. (28), the total number of fpegameters is 11

15



and not 10. The extra parameter can be used aslditional degree of freedom to modify the shapethaf

trajectory. It can, for instance, be used to satistonstraint on the time of flight, as describe&ection 11.D.

Finally, it is shown that the shaping approacheBetfopoulos and Longuski, and Wall and Conwayspezial
cases of the general three dimensional spheriegiisg. In 2000 Petropoulos and Longuski [17] pregohe use of
a two dimensional shape, expressed in polar coatebn for designing low-thrust trajectories witla\gty-assists.

The radius takes the following form:
R(8) = kexp| k sin( k6 +9) ] (29)

A tangential thrust is assumed along the trajectamyg, according to the theory developed for theehr
dimensional spherical model, tangential thrust éssible only if the quantityp defined in Eq. (15) is strictly
positive. In two dimensions, Eq. (18) translate® ithe expressiorD =-R' + R+2 R?/ F¢{ R1+( R‘)}/( F%)z.

One easily finds that tangential thrust is possitéed only if |k1| k? <1, as derived by Petropoulos and Longuski.

Petropoulos and Longuski found solutions to the-pemt boundary value problem by tuning the valtié.0
such that the spiral intersects the target orbithatright time, without necessarily matching thetoeities at the
boundaries [18]. 1zzo [19] studied the Lambert peab for the exponential sinusoids and found thatoiild be
solved for certain ranges of time of flight thapdad on the initial flight path angles. Therefahés method cannot

satisfy all possible boundary conditions on positimd velocity without an additional impulsixe.

Wall and Conway [9] devised a shape-based methmilasito that of Petropoulos and Longuski, with the
difference that they used the inverse of"ad&gree polynomial to model the radius instead rofeaponential
sinusoid. Their expression & contains more free parameters such that the boyrdaditions on both position
and velocity can be accommodated. An additionadupater inR is used to satisfy the time of flight constrairfthe
expression used foR suffers from two drawbacks though. The first isittlit does not cover the unperturbed
Keplerian motion. The second is that tHedegree polynomial in the expressionfbtan have at most 5 extrema.
Therefore, if one models a transfer between twiptelal orbits using 3 revolutions or more, the énse

polynomials would not be able to model oscillatiofishe radii between successive pericenters andeapers.

C. Shaping the pseudo-equinoctial elements

In 2006, De Pascale and Vasile proposed a diffeskaping approach based on the variation of th@abrb
elements [11]. Their shaping approach makes use st of pseudo-equinoctial elements to shape #regan

coordinates. Here, the pseudo-equinoctial shagimguisited in the general framework laid out it 11LA. The

16



equations of motion used to calculate the contestar are the same as Eqs. (7). The expressidreaddguinoctial
elements with respect to the Keplerian eleméatse i Q w v) is reminded here:

p= a(l— e?)

f =ecosw

g = esinw

h= tanl2 co (30)

k:tanlsirQ
2
L=Q+w+v

The longitudinal anomall is used as parameteinstead of the azimuthal angleThe state vector is defined as

X = [ p, f,g,hk, t]T and one can obtain the Cartesian position veobon the transformation [11]:

p:(1+ W - k2) cosL+ 2hk sinL]

(1+ f cosL +g sinL I B h+ kz)

p_(l— W+ kz)sin L+ 2hk cosL]|

rx,L)= (31)

1+ f cosL+g sinL 1 B h*+ kz)
2p(hsinL-kcosL)
(1+ f cosL+g sinL I B h+ kz)

A trajectory can be described as a continuous ssgme of points, parameterized byhere, where each point is
on an instantaneous ellipse. So a successionip$edl can be used to characterize a trajectory.eMery at each
point more than one ellipse can be chosen sincéhasghe freedom to choose in what direction tistamaneous
ellipse is going through the point, i.e. what ig thelocity at that point on that instantaneousgsdli There are
therefore three degrees of freedom when choosinchéwacterize a trajectory as a succession ofselip This

flexibility is called gauge freedom.

Among all the possible ellipses one can choose fabreach instant, there is a special choice whetkby
velocity of the instantaneous ellipse is equalh® physical velocity along the trajectory. That special ellipse is

qualified as osculating. This description of thagectory is explained in detail by Efroimsky [18].

If one uses equinoctial elements and assigns aifumnof L to each of them to describe the evolution of the

ellipses, then one can write the physical veloagy

V:i%:l ii+a_ (32)
dLdt tloxdL dL
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Primes denote differentiations with respect_toln order to obtain the osculating condition, dras to write
down the velocity of the osculating orbit. The éatis obtained by differentiating (31) with respéeatL, while

assuming that all other elements are fixed. Theeedoe has:

1 or
=9 33
t oL (33)

0sC

osc

t' =L, is the value obtained from the conservation ofumlgmomentum and so:

0sc

t' = rz = 1 p 2
= Jup  Jupl1+fcos +§ sirL

The hats on the symbols denote the functiong ofiat one sets to describe the evolution of thpeetive

(34)

equinoctial elements. These functions shall beedadhaping functions. Since the physical velodity be written as

the sum of an osculating term and a gauge tefJy., one obtains the following expression for theeatt

1(0rd>< arj 1a
[ ToL) L

woe” Pl oxdl L) t oL
Lo ter o & (35)
17 6. )oL oxdL
=1lo

Fig. 3: Plot of a trajectory (bold line) whose poits pass through instantaneous ellipses. In the iktrated case,
the ellipses are not osculating becaus® 0.

Fig. 3 illustrates the decomposition of the velpditto v, and v ... The osculating condition imposes
v_....= 0. Developing the latter results in a system of ¢hnenlinear differential equations that defima( fx).

gauge

After simplification, they are written as:
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P freosL-g' sinL:[f' 'L:p - ﬂ(f sirL—§ cot)
r r
hk -k _, o JHP (36)

1+h? + K2 r

h'sinL—k cosL= 0

It is generally accepted to call the set of elemeal@scribed byp, f, g, h, k andL equinoctial only when
they describe osculating orbits, and pseudo-eqtiaiaztherwise. The Gauss planetary equations bi@med from
the three equations of motion and the three osnglatonditions. Therefore if the parameters defijnnwere
computed from the propagation of Gauss planetangtians, under a low-thrust action, then they wdddtlassical

osculating nonsingular equinoctial elements.

In the pseudo-equinoctial shaping, however, theeddency of all five elements f, g, h andk onL is defined

by arbitrary shaping functions. In particular, fblbowing functions were proposed in [11]:

p(L)= p,+ pexpi,L
f(L)=f,+ f,expA,L
(L) =g + gexpA, L 37)
h(L) = h+ hexpA,L
k(L) =k + k expA, L

The parameter4, A,,A,are called shaping parameters and they are additd®yrees of freedom that one can

use to modify the shape of the trajectory.

The shaping function for the time component of dtede vector, as in the spherical shaping metlsodefined

through its derivative with respect to the paramétefor which the following expression was used ie firesent

study:

~ 2
fop =t | P (38)
JUPp\ 1+ f cosL+§ sinL

Adopting the latter expression is like assumingt tthee out-of-plane component of the control veci®or

negligible with respect to the magnitude of thevgyefield. The gauge function has then the expimessp :g_r%
X
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It can be verified that the shaping of the eleméntsgs. (37) and (38) does not satishy=0 and therefore these

elements do not represent an osculating orbit. elethey represent an orbit which passes througbahmee point as

the osculating one but with a different velocitycan be shown indeed that if (38) is chosen feretkpression of ,

then osculating conditions would impoé’e: K =0, i.e. the transfer is planar, and

£(1+ f cosL +§ sinL)— f' cob-§ sih= (39)
p

What actually happens is that by imposing a shap¢he elements ir one fixes the gauge functiod . If that
function is not zero, i.e. the Lagrange constraimtot satisfied, then the elementsiare not osculating and do not

satisfy the Gauss planetary equations.
Providing t from (38) and arbitrary shaping functiorjs, f, g, h, k defines the position through Eq. (31),

the gauge functiondp and the velocity througlv :(g—£+¢jt71, . Reciprocally, it can be shown that if one progide

the positionr , the velocityv and an arbitrary gauge functiah, and assumes that is defined as in (38), then the

corresponding profiles fofp, f, §, h and k exist and are unique. In facfi, f, §, h, k andL are the

osculating equinoctial elements corresponding ¢opthsitionr and the velocity - ® 3 " " . The special case of
7r + (D
oL

a—r+¢ =0 corresponds tow =0, which is rarely encountered in practice. It isrtianoting that the componenof

oL

X is absent in the expression of becauseg—; =0.

The coefficients p,, f,, 9o, . k& and p;, f,,0,,h, k are computed by satisfying the boundary conditions
position and velocity. A Newton loop is performedsatisfy the boundary conditions exactly, sinae gbxtuplet of
functions (f) f g h k L) does not define osculating equinoctial elemente Wewton loop is initialized
with values for the coefficients that provide thecalating values f0|(|6 f g h k “t) at the boundaries. In

mathematical terms, the osculating values correspmthe solution to:
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rix,L)=r
1 o
t.. (X, L) oL

(xi.4)

r(xf’Lf):rf (40)
s =y
tésC(Xf'Lf) o* (xroe) |

From (xi,g) and (xf,Lf) one gets the values of the coefficients by solvimg linear system (37). These

coefficients are used to initialize the Newton ldopsatisfy the boundary constraints. If the caéffits inside the

shaping functions are assembled into a vectaith 10 components, then the solution to the feifg system in

(c, L.L, ) is searched for iteratively:

r(x(c,lﬁ.),l_i):ri

ro(a(et)) -

(41)

Egs. (41) are a system of 12 equations with 12 owkis. Using the coefficients from the osculatingnetnts
can be expected to be a good starting point forirsglthe system as long as the gauge function resrenall, i.e.
the pseudo-equinoctial elements are not too famfilmeing osculating. In mathematical terms, this ditoom
translates into:

o

i (42)

] <

Due to the fact thatb :g_r% and that one can expect the orders of magnitucmm:—r be the same as the
X X.

]

one ofg—lr_, the condition (42) becomes uItimat%%)%

<|x|. The meaning of the latter is that the shapingtions

should not have too abrupt variations. Therefooematter which expressions for the shaping funestiare used, the
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shorter the transfer in terms &f - L, , the farther the osculating initial guess will foem the solution of (41) and

the smaller will be the chance that the Newton loopverges.

Once the values of the longitudinal anomalies athtbundaries and the coefficients inside the slgafpinctions
of the pseudo-equinoctial elements are obtainedirtectory is completely characterizédis defined through Eq.
(38) and the evolution of time is then computedblying the integral:

L"r

t=t(L)=[ & ()d (43)

L

The time of flight is uniquely defined. If the tinoé flight is constrained, then a second Newtorplower one of
the shaping parameters can be used to satisfyctimstraint. Finally, the totallv is obtained by integratian’
over [Li L, +2nrn]. The magnitude of thelv can vary substantially, depending on the time light to be

satisfied.

D. Satisfaction of the time of flight constraint

The advantage of generating trajectories by shaghiegtate vectors is that the equations of matiavide the
corresponding control law analytically. Howeverréhare physical quantities which are more diffi¢alobtain with
this method, one of them is the time of flight esponding to a given shape. The time of flight efirted as
T(sf)— T( $) and is a function of the parameteif the derivative ofT is provided, as in the case of the shaping
methods described above, then the time of flightiésintegral ofT’ over[s s]. The analytical integral of is not

generally possible and has to be solved numerically

The time of flight is often constrained as the sgaaft has to arrive at destination at a given timeendezvous
or fly by a celestial body. In order to satisfy tth@nstraint, at least one additional parameterediired when
shaping the trajectory. A way to satisfy automaltycthe time of flight constraint is by shapifgor T’ such that the
desired time of flightl; is exactlyT(s;)—T($) = J.: T d+. One would be tempted to choose an expressiof’ for
that can be analytically reduced to quadraturen@lgh this approach would be computationally treaidvay to
solve the time of flight constraints, the resultthgust profiles would not necessarily have reabenmagnitudes in
practice. That explains why, in the previous sutises, the time evolution profiles were chosen torespond

either to a tangential thrust or a 2D motion.

If the parameterization is performed using the timene could then trivially define the trajectorythre desired
segmentt, t,]. This approach would remove the need to addressime of flight constraints further down in the

calculations. On the other hand, quantities likkedghimuthal anglé or the longitudinal anomaly would need to be
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constrained to take values within the desired Brsitich that the boundary conditions are satisfibé. problem of

satisfying the time of flight constraint is themplaced by the problem of satisfying the boundanyditions.

A two step approach to address the time of fligintstraints is presented in this subsection, therskstep being
applied if the first one fails. The two steps diffie the way the additional parameter is used éenfdrmulation of the
shaping. The first one includes the parameter withe expression of the functions shaping the stattor. The
second approach consists of augmenting the iritizé evolution functionT in a way that the time of flight

constraint is exactly satisfied.

1. Inserting an additional parameter within the shapinctions of the state vector

This approach can be applied to all the shapindnaust described in this paper. It consists of addidggree of
freedom to the expression of one of the functidmspsng the state vectors. The idea is that whenvanies the
value of the additional parameter, the time offfligaries, and the problem translates into theckefor the right
value of the parameter that satisfies the time tcaimé. Due to the nonlinear relationship betwdsn time of flight
and the shaping parameters, it is generally imptes$d solve the problem analytically. Here, theain iteration

for the solution of nonlinear equations was used.

2. Augmenting the original time of flight evolution

If the timet is decoupled from the other state variables i&ginstead of inserting the additional parameter

within the expression of the shaping function, oae insert the additional parameter in the deniof t :T(s).

Let us suppose that an initial trajectory, provitbgca shaping method, has a time prdfier (s) . Without loss
of generality, one can talre(s) =0 andT (sf) equal to the computed time of flight. T} is the desired time of
flight and T,, =T (s, )— T is the time of flight violation, one can introduce function y satisfying
)((sf)—x(s) =1 such that the time profile i§, =T - T, x, with T that verifies‘l')((sf ) =T, . The shaping of the
time must be such thaf, is strictly monotonous an(TX' never becomes 0, otherwise singularities occurnwhe
calculating the control law. The simplest form thatcan take isy(s) = (s- $)/A swhereAs= s - s, however it
is often the case that boundary conditions exissoand thus oFFX'. Therefore, the functiory must satisfy three

conditions:

X(s)=o0 (44)
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The last condition can be rewrittenfaxs’dszl. Egs. (44) can be satisfied by choosing a polyabwii degree
two for x' such asy'(s) =-6(s- $)( s s)/A '

This method for satisfying the time of flight corahts is faster than the use of the Newton loopesionly two
iterations are needed to find the desired trajgctitre first iteration computes the time of flighiblation T, the

second recalculates the dynamics with=T -T,, x .

It should be noted, however, that if this method wpplied alone to satisfy the time of flight coastts, then
undesired phenomena might occur. In fact, the moddf -T,, ¥ to the time evolution profile can distort the iait
low-thrust character of the dynamics, and the tegukontrol profile can have a high magnitude. Tinethod can
also break down in some cases wher=T -T,, x stops being strictly monotonous, in which casegsiarities
occur when calculating =1/t . These inconvenient behaviors led to the decitarse this method only when the

Newton loop fails to satisfy the time of flight cziraint.

E. Test cases

Three mission scenarios were selected to tesththgirsy methods and the method to satisfy the tifrféght
constraint: a rendezvous mission from the Eartiaos, to the near Earth asteroid 1989ML, to coneghpel-1 and

to Neptune. The orbital elements of the four tatgeties are listed in Table 1.

Systematic searches were conducted on a wide rlganch windows and times of flight, in orderewaluate
the overall capacity of the shaping methods to rhime thrust transfers. The characteristics of spacecraft and
its dynamics are the same in all three cases. pheesraft is represented by a point with a mass06D kg. It
carries a propulsion system with a specific impub$e3000 s. No limit on the achievable thrust mage is
assumed. The spacecraft is subject only to thetgtenal pull of a central body (the Sun in alteéb cases) and to

the propulsion system.

The shapes were implemented in a Matlab code witlcaanputations performed on an Intel Core 2 Duo

processor running Linux.

Table 1 Orbital elements of Mars, near Earth astera 1989ML and Tempel-1

Mars 1989ML Tempel-1 Neptune
Semi-major axis 1.524 AU 1.272 AU 3.124 AU 30.104 A
Eccentricity 0.093 0.137 0.517 0.011
Inclination 1.850° 4.378° 10.527° 1.768°
Right ascension 49.557° 104.411° 68.933° 131.794°
Argument of periapsis 286.502° 183.267° 178.926° 5.@467°
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The best shaped solutions were then used as igiteds for the direct trajectory analysis tool DN.ADITAN
takes the control profile resulting from the shgpés input and transcribes the optimal control jgmbassociated to
low-thrust trajectories with finite elements in 8ngenerated on spectral bases [11]. In this subse®@ITAN was
run taking as maximum thrust level the peak thalgthined from the shaping approaches, and minigitie

propellant mass, with the aim of assessing howedio®ptimal thewvs provided by the shaping methods. are
1. Rendezvous with Mars

The launch datet; considered for this mission covers the period ketw January *1 2020 and
December 312027 and is discretized with a 15-day time stdps Window is large enough to contain almost four

synodic periods of Mars (2.14 years). The timelight ranges between 500 and 2000 days and isadized with a

20-day time step size. The number of revolutiorallowed for the transfers is between 1 and 4.

Table 2 Results of each shaping method for the Marendezvous mission.

Spherical Pseudo-equinoctial
Percentage of feasible trajectories 100% 89.1%
Av of the best trajectory [km/s] 5.74 5.83
Peak thrust of the shaped trajectory with the be$N] 0.22 0.16
DITAN optimizedAv [km/s] 5.69 5.68
Average computational time for shaping a trajecfsty 0.316 0.238

Trajectories were deemed feasible if the timeighfl constraints were satisfied. Table 2 showsreentage of
feasible trajectories obtained through the systensstarch for both the spherical and pseudo-eqtiaiczhaping
methods. Theé\v of the best solution from each shaping is alssqmted together with the corresponding optimal
solution when fed into DITAN. Note that the traj@des with the lowesf\v provided by the spherical shaping and
by the pseudo-equinoctial shaping are differentindit on the thrust was set when performing theiroation,
equal to the peak thrust of the shaped trajeclicalgle 2 also reports the average time requirectt@igte a solution
with the shaping approach. Fig. 4 represents ellf¢fasible solutions with their associat®d cost. Note how the
spherical shape provides a wider set of feasiligtisa with lowerAv. On the other hand both shapes identify the
same regions in thig Ty space where the transfer requires a lighThese regions are located towards the lower
values ofT;. A periodic pattern can be observed in the pletsgre the period corresponds to the Earth-Marsdigno

period.
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Fig. 4 lllustration of the set of combinations of dunch date and time of flight for which the spherial (a) and
the pseudo-equinoctial shaping (b) found feasiblehitions to rendezvous Mars.

2. Rendezvous with Near Earth Asteroid 1989ML

The launch window is the same as for the Mars aasewas discretized with the same time step. Thedig
period of asteroid 1989ML is 3.30 years, thus thenth window includes two full synodic periods. Thage of the
time of flight is between 100 and 1000 days, andligretized with a 20-day time step size. The nemif

revolutionsn, allowed for the transfers is between 1 and 2.

Table 3 Results of each shaping method for the 198® rendezvous mission.

Spherical Pseudo-equinoctial
Percentage of feasible trajectories 83.7% 75.5%
Av of the best trajectory [km/s] 4.47 4.82
Peak thrust of the shaped trajectory with the hggiN] 0.31 0.33
DITAN optimizedAv [km/s] 4.21 4.45
Average computational time for shaping a trajecfety 0.316 0.264

Table 3 presents the percentage of feasible sokufiar both the spherical and pseudo-equinoctiapisty. The
behavior of the shaping method is similar to theecaf the Mars rendezvous mission (see Fig. 4).AMg are on
average lower than for the Mars mission, becausesémi-major axis of 1989ML is lower. The differerin orbital
inclination between Mars and 1989ML is only 2.5 g and it has a weaker impact on the tatalthan a
difference of semi-major axis of 0.25 AU. The petagie of feasible trajectories is lower than fa Miars mission
because the second step of the method to satisfyirtte of flight results in a singularity, due toetbehavior
explained in Section II.D. Indeed, the Newton Idopsatisfying the time of flight does not conveffge the cases

where the desired time of flight is very low comgrhrto the number of revolutions. The reshapinghef time
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evolution T takes over in that case. However, the valud,gf is too high causing’ to tend towards 0, and the
resulting trajectory is not physical. Fig. 5 is Btpof the departure dates and times of flight loé tfeasible
trajectories for both shaping methods. It can beeoked that the spherical shaping always providdeast one
feasible trajectory if the time of flight is abo880 days. For numbers of revolution that are urealsle compared
to the desired time of flight, both shaping methbdsak down. The pseudo-equinoctial shaping previgever
feasible trajectories than the spherical shapimgabse the shaping parameters do not give enoagibifity to
change the shapes and attain wide ranges of tifrfighd. However similar patterns can be obserirethe results
of both shaping methods, which hints to betteresuielative configurations between Earth and 1989btLa low-
thrust transfer. The patterns show a periodicityaégo the value of the synodic period of the EARBIML
system.
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Fig. 5 lllustration of the set of combinations of dunch date and time of flight for which the spherial (a) and
the pseudo-equinoctial (b) shaping method found faéble solutions to rendezvous 1989ML.

3. Rendezvous with comet Tempel-1

Tempel-1 was chosen as a target because it hay &a@entric and relatively inclined orbit. McCohgget al.
[21] used this test case for the exponential silusieaping. A systematic search was performed erséme launch
window proposed by McConaghy et al.: between Jantf2000 and January®2016. The range of the time of

flight is between 400 and 1500 days, and the nurmbevolutionsn, was set between 0 and 2.

Table 4 Results of each shaping method for the Terapl rendezvous mission.

Spherical Pseudo-
equinoctial
Percentage of feasible trajectories 68.1% 43.2%
Av of the best trajectory [km/s] 11.13 13.44
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Peak thrust of the shaped trajectory with the hggiN] 1.40 1.13
DITAN optimizedAv [km/s] 10.69 10.81
Average computational time for shaping a trajecfefy 0.318 0.286

Table 4 presents the percentage of feasible sokufiar both the spherical and pseudo-equinoctiapisty. The
behavior of the two shaping methods is similarite previous two cases; however fewer trajectoniesfeasible
because the Newton loop fails to converge morenpéithough for every launch date at least onelfEatrajectory
exists. McConaghy et al. present the propellantsnfi@stions resulting from the exponential sinusoil constant
specific impulse of 3000 seconds is used to convertlow-thrustdv from the exponential sinusoid. Using this
value for the specific impulse, thr of 11.13 km/s of the best transfer from the sglarshaping converts into a
propellant mass fraction of 31.5%. The pseudo-exptial’'s bestdv of 13.44 km/s converts into 36.7% of propellant
mass fraction. No impulsivavs are to be taken into account because the bourmerstraints on velocity are
satisfied. A substantial improvement is obtainednpared to McConaghy et al. whose best shaped toajec

requires 50% of propellant mass fraction.

Fig. 6 illustrates the set of feasible combinatioh$aunch dates and times of flight found by tpéevical and
the pseudo-equinoctial shaping methods. When muae pne number of revolutions is feasible for aegiv
combination of launch date and time of flight theily the one with the lowestv is plotted. Both shaping methods
identify the same region where the transfer isdostly in4v. These regions are periodically distributed, viita
period of Tempel 1. A smaller scale periodicitycaéxists, and corresponds to the Earth’s period (dose to the
synodic period of the Earth-Tempel 1 system). it ba therefore deduced from the plots that theargosition on
Tempel 1's orbit has more impact than the deparpwsition on Earth’s orbit. There is physical seisehis
observation because the transfer can change stibByaif the spacecraft arrives at Tempel 1's petion at 1.51
AU or apohelion at 4.74 AU. Indeed, in the firsseahe perihelion is raised first, followed by ty@ohelion just
before arrival, and in the second case the ordéneofwo maneuvers is inversed. Finally, the ressiiow that the

transfers are generally more costlymwhen the time of flight shortens.
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Fig. 6 lllustration of the set of combinations of dunch date and time of flight for which the spherial (a) and
the pseudo-equinoctial (b) shaping method found feible solutions to rendezvous Tempel 1.

4. Rendezvous with Neptune

In order to test the shaping methods on a wideaafigransfer types, a rendezvous with Neptundsis studied
as test case. Neptune has a semi-major axis of/80.and an orbital period of 164.8 years. One cakeninitial
estimations of the orders of magnitude involved iendezvous to Mars by studying the Hohmann teaurisftween
two circular orbits representing Earth’s and NeptanStraightforward computations provide the chimastics of
the Hohmann transfer. The transfer ellipse hasransajor axis of 15.6 AU and eccentricity of 0.94dahe transfer
time is 30.7 years. The first maneuver at Earth&ads of 11.66 km/s and the second one at Neptune #&GH

km/s, so the total Hohmann transfer requirds af 15.71 km/s.

A systematic search was performed over a launclilavinbetween January'2020 and December 32025,
discretized at every 15 days. Two scenarios haea bddressed: one without heliocentric revolutiamd one with
10 revolutions. The values of times of flight thaere investigated differed between the two cases. rfo
revolutions that set ranged between 11000 and 36898 (that is 30.1 and 82.1 years) at 500 day sireps. For
the case of 10 revolutions, the times of flightgaa between 40000 and 80000 days, with intervad6fdays. An
initial tangential velocity of 3 km/s relative tcaEh was set at the departure for the transfersowtt revolutions,

while in the other case the initial relative vetgat the Earth is zero.

Table 5 Results of each shaping method for the Napte rendezvous mission with no revolution

Spherical Pseudo-
equinoctial
Percentage of feasible trajectories 92.4% 13.6%
Av of the best trajectory [km/s] 14.99 50.37
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Peak thrust of the shaped trajectory with the hggiN] 1.36

3.25
DITAN optimizedAv [km/s] 13.34 13.41
Average computational time for shaping a trajecfefy 0.321 0.292
" Av obtained for n= 0 [km/s]
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Fig. 7 lllustration of the set of combinations of dunch date and time of flight for which the spherial (a) and

the pseudo-equinoctial (b) shaping method found feéble solutions to rendezvous Neptune, without any
revolution.

It can be seen from Fig. 7 that the two shapinghodg provide different results when no revolutiame
allowed. The spherical shaping produces transfetls substantially lowerdvs, with the lowest values ofv
reaching 15 km/s. The results have a periodicitg @€ar, which is the synodical period of the Samtfi=Neptune
system. With the spherical shaping, the lowbst are obtained for transfers between 13000 day2@600 days.
Shaping the pseudo-equinoctial elements does mvide interesting results for two reasons. Thet issthat the
Newton loop does not impose the boundary conditieels the other is that the range of times ofHtigovered by
varying the shaping parametér is limited and the reshaping of the time evolutites to be used, which can

potentially raise thelvs by much.

5. Discussion

Both shaping methods generated a number of feesiltigions for every launch date, although the Newbop
failed to converge for a number of times of flight.particular, the loop did not converge when flight time is
short for the given number of revolutions. The sasewhich the Newton loop fails correspond todacipries with
very highAv’s and as such, are often not interesting in practicshould be noted, however, that due to theosegd
shape there is no guarantee that the thrust maignituclose to the optimal one. More importanttyg peak thrust

recovered from the dynamic equations might be highan the maximum thrust allowed for the transfehis
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problem will be addressed in the remainder of gaper and represents a limitation of the shapimgageh as it

does not allow for a clear discrimination of thadibility of a transfer given a specific engine.

Il Linear quadratic controller

This section describes a method to quickly imprthee quality of the shaped solutions. The assumpiirind
this approach is that if the shaped solution is lootlly optimal then there exists an optimal solutin a
neighborhood of the shaped one. The validity o @sumption will be verified theoretically at thed of this

section.

A. Derivation of the LQ controller

Let one assume that a spacecraft has positimelocity v and is subject to the gravitational pull of a caht
body with a gravity parametgr.. Additionally the spacecraft has an onboard a@blatole propulsion system that
contributes to the motion of the spacecraft witreaoelerationu. If one defines the state vectoasx = [r,v]T then
the equations of motion can be writtensas A (x)+Bu , with A(x) = [0,—,urT/r3]T . The equations of motion are

then linearized in the neighborhood of the nomigandu, within the time interval,. The linearized system is:

&(t)=[0,0,0,0,0,§

. (45)
g= DALO(I) E+Bv= DALO(I) £+B (ul ~Uo (t))
The gradient oA at a poinix is expressed as:
O3 |3
0OA = (46)
ol
such thaDs is the nil square matrix of order I3,is the identity matrix of order 3 arfd, is written:
y'+Z2 -xy @ -xz
Ag:% -xy X+7Z -yz 47)
r
-Xz -yz X+ ¥
with r =[x, y, z[ . Eq. (45) can be rewritten as:
t)=[0,0,0,0,0,0,
‘:1 = Al(t)él-‘- Blul

with the control vector denoted hy, and the augmented stafg to removeu, from the equations. The desired

optimal control has to minimize the objective fuant
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3.(u) =87 (6 )Qa(t )+ 3 ] Julf ot (49)

The minimization of (49) provides the feedback colnt

u, =BJEg, (50)

where the matri is computed by integrating backwards the Ricaéfiéintial equation:

E(t,)=-
.(f) Q, -
E=-AE-EA,-EBB/E,OtOI,

The first term in the objective function will makgtend towards 0, which is what is required: theyreations
on the trajectory should not affect the boundaridse fact that the last component&gfis always 1 is not an issue
because the choice @f; is made such that it does not influence the cayerse of the other components &f

towards 0. The matri®, is defined as:

gl, 0 O
Q= 0 gql;, 0f for q>0, q>0 (52)
0 0 0

whereq; is a weight on the final position vector to satidfe final boundary constraint, agghas the same role but
for the velocity. The values for the two weightsreveet to 1 in order to satisfy the boundary coodt at arrival up

to a relative accuracy of PO Note that minimizingJ; with Eq. (48) is the same as minimizing
J (u,):éT(tf )Qg(tf )+%J.I u ||2 dtwith the condition in Eq. (45)Q is the matrix composed of the block

containing the first six rows and six columns iresh.

The optimization requires the integration of a 77bwyatrix differential equation backwards in tinf@|owed by
the forward integration of the linearized equatiofisnotion using the matrik. The first integration can be made
computationally faster by noting thBtis a symmetric, hence it is sufficient to comp8variables instead of 49.
The numerical propagations, in this paper, weréopsed with the Matlab functioade45 that implements a45™

order Runge-Kutta variable step size integratotfy wirelative and absolute tolerance of.10

Once the optimized linearized trajectoti# & is computed, the corresponding control law needset updated
since it verifies the linearized equations of motand not the real ones. The real control law spaading to the

physical trajectory is calculated from:

rreal + /‘13 r real (53)

real

real
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Note that keeping the linearized control law anttuating the corresponding state vectors by prafiag
would not only be more computationally intensive Wwould not guarantee that the trajectory endbatarget state

vector. Finally, the totahv can be calculated by an integratiorugf, overl,.

B. Estimation of the Error on the Control Profile

The accuracy of the linearized solution can besseskby computing the error betwegnand u If X,,u,

real *

defines the reference trajectory, +§&,u, the optimal linearized trajectory ang, +&,u,., the trajectory obtained

real

after recomputingy, with the real dynamics, then one has the equations:

X, = A(X,)+Bu, (54)
§=DA| E+B(u -u,) (55)
X, +&=A(Xo+E)+Bu,, (56)

By subtracting Eq. (54) and (55) from Eq., (56) ge¢s

B (U ~Upea ) = A (X +8) ~A(X,) ~DA[ & (57)
which can be approximated by:
B(U ~U.) =8 H, | 6+O(Jg") (58)

whereH,| is the Hessian oA atX, . Becausé\ depends only on the reference posi1lignHA|X also depends on
roonly. If one definesAu =u, —u,, = [Aux,Auy,AuZ]T and &, as the first three components ®f i.e., the change

of position resulting from the LQ controller, thEq. (58) can be developed into the system:

au =g Hy | & +offg [f)
au, =g H3| & +O(|g I (59)

au, =g 3| g +Offs )

In Egs. (59) one has that all ¢f, depends only orr, and that||H;||:O(||ro||'4). The interpretation of these
equations is that the error on the control law esponding to the linearized equations of motioneddp uniquely
on the position of the reference trajectory andgbgurbations in position. Moreover, when one assithat the
perturbations in the position are small, then therebehaves agr|™, or as|r,|” if one considers the relative

perturbations & /|r,|. Therefore, when the reference trajectory appremcthe central body, the control
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corresponding to the real equations of motion djgerfrom the control computed with the linearizgdaions of

motion.
C. Optimality of the LQ and shaped solutions
In this section, it will be proved that: if the gieal solution is locally optimal, then the outputrfrthe LQ controller

will be equal to the shaped solution. Vice verses demonstrated that when the output of the L@rotler is equal

to the shaped solution, the shaped solution idljooptimal.

Let us define the two mathematical problems:

rrginJ,(u|)
0,:= &(t)=0 (60)
§=1f,(&u)=0A] , B+B(Y -u,)

and:
nLinJ(u)
3= ) =[nft). vol)] (o1
x=f(x,u)=A(x)+Bu

whereJ has the form:
I(u)= [x(tf ) —X, (tf )]T Q[x(tf )—x0 (tf )] +%J'I Jul* ot (62)

The Hamiltonians correspondingo and tol, are respectively H = pf —||u||2 /2 and H, = pf —||u ||2 /2.
If one callsp”, u", p; and u; the respective optimal adjoint variables and adnprofiles, then the optimality

conditionsoH /du =0 and dH, /du, = 0 give the control laws:

FU——
I (63)
| | v

The subscripts andv denote respectively the first three and the lastet components of the adjoint vectors. The

differential equations governing the optimal adfoiariablesp” andp, are:

p =-0H/ox=-p Bf /ox=—p [DA|.

. Y ) (64)
p = —OH/GE =-p, [#f, /aE =R DDAL(“(I)

with the transversality conditions:
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(1) ={x(1)x(t)] @ (65)
pi (1) =-¢(t,) @

From the latter, one gets (tf ) =p, (tf ) It is important to note that due to the smootkn&A and the expression
of the differential equations governing', x,", p and p;, the last four quantities ar€”on their interval of

definition. Therefore, the control profileg and u; are alsoC”.

Three lemmas establishing some propertiesAgfand three propositions on the nature of the soistito

problemsd andC, are now proved.

u
5
x|

Proof. Let x= [x,y,z]T Ou andqg= [ql,qz,qajT OR®. From the definition ofA  , one has:

Lemma 1: Given the set) =R°\{(0,0,0}, Ox0OU,0q0OR?, A (x) @ =Loxx(qxx).

V' +72 -xy -xz
A, (x) ,115 -xy X+7Z -yz (66)
"X" —XZ -yz ﬁ + )%

then:
(y2+zz)q— Xyq— xzq
Ag(x)mlzi5 —xyq+(x"+ Z) q- yzq (67)
I
-xzq - yzg( %+ §) g
and since
X\ (qz-qy | (Y+Z)a-xa- xzq
xx(qxx)=| y|x| ax-qz|=|-xyg+( %+ 3 o vz (68)
2 N7 | —xaq- yzg( 5+ ) g
then A, () :ﬁxxmxx). .

Lemma 2 OxOU andqOR®, A (x)G =0 = g andx are collinear.

Proof. From Lemma 1, if one has (x) @ :,u||x||75x x(qxx) =0, then there existst DR such thatgxx = Ax .
Taking the dot product of both sides within the latter equation and remembering that0, one getsi =0.

Thusq andx are collinear. Reciprocally, ¢ is collinear withx, then A | (x) [g=0. [
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Lemma 3 Let x,yOU . The matrixA (x)-A(y) has maximum rank if and only i # +y .

Proof. Let x,yOU such thatx#+y, and qOR® such thatA (x)G=A (y)@ , then if x| and |y| are the

Euclidian norms ok andy respectively, one has:
xx(axx)/|x|" =y x(axy)/|yI (69)

Expanding and rearranging this expression to isgjabne obtains:

1 1 _ x[q y [q
3 7 3 9T T s X T sy (70)
[llxll Ivl } Y

If |x|=]y|, then Eq.(70) yield{xq)x =(y @)y thereforex==+y, which goes against our initial assumption.
Therefore|x| #|ly| and then Eq. (70) results tn=a,x+ B,y with,

aq:{ 11 Txm ﬂq{ 1 1]_ly|]q a1

K M) X M) I

Inserting the expression fgrinto Eq. (69) one has, after rearranging the terms

{ﬂx+ 9, yJX(xxy):O (72)

WK v

From Eq. (69) it can be obtained thakiéndy are collinear therjx| =[ly| . Hencex andy are not collinear, i.e.,
xxy#0. The implication is thatq lies in the plane generated by and y. EqQ.(72) results in
BIX|"x+a|y["y=0, thus a,=8,=0 and x@=y[@=0which implies q=0. Therefore the

endomorphismh (x)-A  (y) is injective and hence invertible, and its ranB.is

Conversely, it can be checked thakif +y , then A (x)=A (y) and A (x)-A(y) does not have maximum

rank. n

Proposition 1 Let u" (respectivelyu, ) be a solution of the optimization problem (resp.d,). Then

T

pT=[~uT u K:'T (resp.p;" =[~u" 4" K,T), where x (resp. «, ) is a scalar function, and" (resp.

u; ) satisfies the differential equations:
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(73)

Proof. From the optimality conditions, one has the espionsu” =B]p ' and u; =B]p,". Developing these
expressions, the control vectors correspond tddheth to sixth components of the adjoint variabMereover,
since pT =-A] ((x0+§)(t))p*T and p;" =-A] (xo(t))pr, one getsu =B{p" :—BIAlT((x0+£)(t))p*T and
U =B/p’ :—BIAI(xo(t))p*IT. By developing the expressions @f and B;, one finds that the first three
components of the adjoint variables correspontiécopposite of the derivative of the controls. 86 oan write
pT=[-uT U K:‘T and p;" =[-4" y’ Iq:'T. From the expressions of the derivatives of thpiatl

variables, one obtains:

- U —Ag((x0+£)(t))u*

pT=| 0 |=-AT((x+E)(1)) U |= U (74)
K K ugu’
] " —Ag(xo(t))uI

b =| u [=-Al(x(t) U =] (75)
KI /(I ugul

The differential equations satisfied by the compisef u” and u; are the first three components in Egs. (74)

and (75). [

Proposition 2 Let u" (respectivelyu;) be a solution of the optimization problem (resp.,). Let
I, :(t1 tz) OR be an open interval of time. Let us assume thatahgular momentum along the trajectory

corresponding tar” (resp.uo) is never zero. Ip. =0 (resp.p, =0) only, thenu” =0 (resp.u, =0) onl..

Proof. From proposition 1p’ =0 (resp.p; =0) on|, implies thatu” =0 (resp.u, =0) onl,, and thusii" =0
(resp.i; =0) onl,. From the differential equations provided by Psifion 1, one obtaing\ ((x0 +£)(t))u* =0
(resp. Ag(xo(t))ujzo). Thus, according to Lemma 2, there exists a schlaction Aon |, such that

u =A(x,,+& ) (resp.u; =Ax,). A is continuously differentiable becausg, +& (resp.x,,) is continuously
differentiable. One obtains then the differentigluation )i(xr0+§r)+)|(>'<r0+£ ):O (resp. Ax o+ A% ,=0).
Because the trajectories are always assumed to dray@lar momentum bounded away from zero, one gets
A=0and A=0 and thusu” =0(resp.u; =0) onl. Due to the continuous nature of the optimal thpusfiles,

the latter result is valid on =[t, t,]. "
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Proposition 3 Let u” be a solution of] and u; a solution ofxJ, . Let us assume that the angular momentum of

the initial trajectory, never cancels. I =u; then there are three regimes in which the trajgctan evolve:
1) X' =x,
2) X' =-x,
3) u'=u; =0, i.e., the optimal trajectories are coast arcs.

Moreover, the optimal trajectories cannot switchngen regimes 1 and 2 without passing through red@non
an open interval of timtét1 tz), and switching between regime 1 and regime 3 céylwappen ifu, =0at the

boundary.

Proof. From Egs. (63), ifu" =u; then p, =p, and p, =p,, . Furthermore,p, =-p, and p,, =-p, implies

p, =p, , thus p'=p; . From Eqs.(64) one getp, EﬁDAL, _DALU) =0 therefore p;, [EAQ(X*)—AQ(XO)} =0.
According to Lemma SAg(x*)—Ag(xo) has full rank as long as # tx,, therefore, there exists three regimes
in which the trajectory can evolvex’ =x,, x" =-x,0r p, =0. Proposition 2 can be applied for regime 3
because the angular momentum of the initial trajgot, is assumed to never cancelplf =0 on an interval of

time (t, t,), thenu’ =u;, =0 on(t t,), i.e. the optimal trajectories are coast arcs.

The trajectory cannot switch between regime 1 agimie 2 directly because the trajectory is contisuo
Therefore, regimes 1 and 2 can switch only if regiBntakes place between the two. However, in ths¢ cthe
system has to be in regime 3 on an interval of timet,) and not for an isolated instant of tirhe because
otherwise, due to the continuity of the trajectatye system would bounce back to the regime leadmgo
regime 3. There is a condition when the systemsseap between regime 1 and regime 3 on an intefvaine
(tl tz) since at the boundary between regime 1 and regige 0 and =0, from Eq. (45) one obtains that
u; =u,at the switching point, otherwise the velocity flfvould not be continuous. Finally, because wtien
system is in regime 3 oh =(t, t,), u"=u; =0 onl, by continuity on the controls are zero on thesate ofl,

i.e.onl, :[tl tz], and finally one obtains that at the boundary leetwregimes 1 and 8, =0. [

Theorem: Let u” be a solution of] and u; a solution of(J, , thenu” =u, = u" =u, . Furthermore, ifu, 20
along the whole trajectory and the angular momentfntihe reference trajectory, is never zero, then

u =u =u =u,.
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Proof: The first inference is proven first. i' =u,, then x’ =x, and the equations governing and p, are

identical, thusp  =p, and u" =u; . Note that to establish this inference, no paldicyproperty of OA is

required.

The proof of the reciprocal inference requires sEdgmroperties of the dynamical systems, and tloeecbf the
gravity field. This inference is a corollary of Psition 3. Because the starting points of thestitajries are
fixed at x"(t;) =x () =x,(t ), the optimized trajectories start in regime 1 aimte u,#0 along the whole
trajectory, the system remains in the same regiihe time. Therefores” =x, and u” =u, along the whole

trajectory. [

From this result one could argue that if the LQtoalfer does not modify the reference trajectohert the

reference trajectory is locally optimal, on theasthand, little can be said if the contmﬂ is worse tharl,, .

D. Application of the LQ Controller

The LQ controller is applied to the improvementtwé solutions to the test cases presented in Seittir Only
those transfers that do not pass inside Venus's wdre retained in order to keep the error dudintearization

1 2
small. Fig. 8 to Fig. 11 show the improvement & lth norm of the control profileséj||u|| dt between the shaped
|

trajectories and the corresponding LQ controll@jettories.

w1gt Earth—-Mars, spherical shaping X 10° Earth-Mars, pseudo—equinoctial shaping

L2 norm from LQ controller [kr‘?/s“]
N w B w

[
T

. . . . . . . . . . . )
1 2 3 4 5 6 7 4 5 6 7 ,f
L2 norm from shaping [kr’rﬂs“] 101 L2 norm from shaping [k#s"] x 10

Fig. 8: Comparison between theé, norms of the controls of the spherical and pseudeguinoctial shaped
transfers and the corresponding LQ-controlled improvement for the Mars rendezvous mission.
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L2 norm from LQ controller [kr?is"]

Earth-1989ML, spherical shaping

L2 norm from LQ controller [krﬁs"]

Earth-1989ML, pseudo—equinoctial shaping

15 2 25
L2 norm from shaping [kﬁﬂs“]

x10°

3 4 5 6
L2 norm from shaping [kﬁﬂs“]

x10°

Fig. 9: Comparison between theé_, norms of the controls of the spherical and pseudeguinoctial shaped
transfers and the corresponding LQ-controlled impro/mement for the 1989ML rendezvous mission.
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L2 norm from LQ controller [krﬁs"]

Earth-Tempel 1, spherical shaping
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L2 norm from LQ controller [kr?is"]

Earth-Tempel 1, pseudo-equinoctial shaping

L2 norm from shaping [kﬁﬂs"]
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L2 norm from shaping [kr?MSA] x 10

Fig. 10: Comparison between thé , norms of the controls of the spherical and pseudegquinoctial shaped
transfers and the corresponding LQ-controlled improvement for the Tempel 1 rendezvous mission.
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x10° Earth—Neptune, no revolutions, spherical shaping

X 10*Eanh—Neptune, no revolutions, pseudo-equinoctial shaping

2.4F .5 T T T T T T T T

2.2
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S 16 - = %9 .
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o6 4, .

0.41f 7§

n L L L L L L L L L 1.E L ' L L L L L L L
0.5 1 15 2 25 3 35 4 4.5 0 0.5 1 15 2 25 3 35 4 4.5
L2 norm from shaping [krgms“] x 10 L2 norm from shaping [kﬁ)lsA] x10*

Fig. 11: Comparison between thd., norms of the controls of the spherical and pseudeguinoctial shaped

transfers and the corresponding LQ-controlled improvement for the Neptune rendezvous mission, without
revolutions.

The typical way for a mission analyst to proceedildde to perform a search on a wide search segrabe
using the combination of a shaping approach and.@eontroller. Promising individual trajectoriearcthen be

further optimized with a local optimizer like DITANvhich is fed with the control profile of the i@t guess.

Fig. 12 to Fig. 17 are examples of thrust profibesresponding to the shaped trajectories, the LQrobed
trajectories and the DITAN re-optimized trajectsridor all rendezvous missions. In this case, DITAMS
minimizing theL, norm of the control in order to assess the opitgalf the control profile provided by the LQ

controller. No upper limit was set on the contrahgnitude. The figures illustrate well how the cohtprofiles

improve at each step.

It can be seen that the peak thrusts are reducatidases, except in the case of the transfeB8NL with the
pseudo-equinoctial shaping used as trajectory gémerFig. 13, Fig. 16 and Fig. 17 show particyladrge
reductions in the peak thrust by the LQ controllére general features of the thrust profile resglfirom the LQ
controller are always closer to the optimal onef@ITAN. The LQ controller adjusts the maneuverststhat they
tend to take place at places where they are mdicest. The example of the Mars rendezvous in Bg.shows
thrust profiles from the LQ controller and DITANatare very similar. The reason is that the inishhped

trajectory is itself not far from the optimal one.
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Control profiles for a launch on 7304.5 MJD2000

0.35 T T T T T Trajectory for a launch on 7304.5 MJD2000
—— Shaped x 10’
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Fig. 12: Rendezvous mission to Mars. Comparison h&een spherical shaped solution, LQ optimized soluin
and DITAN optimized solution: a) control profile, b) trajectory.

X 10 Trajectory for a launch on 7304.5 MJD2000
Control profiles for a launch on 7304.5 MJD2000
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Fig. 13: Rendezvous mission to Mars. Comparison beeen pseudo-equinoctial shaped solution, LQ
optimized solution and DITAN optimized solution: a)control profile, b) trajectory.
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Fig. 14: Rendezvous mission to asteroid 1989ML. Cqrarison between spherical shaped solution, LQ
optimized solution and DITAN optimized solution: a)control profile, b) trajectory.
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Control profiles for a launch on 7529.5 MJD2000
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Fig. 15: Rendezvous mission to asteroid 1989ML. Cqrarison between pseudo-equinoctial shaped solution,
LQ optimized solution and DITAN optimized solution: a) control profile, b) trajectory.

Control profiles for a launch on 465.5 MJD2000
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Fig. 16: Rendezvous mission to Tempel 1. Comparisdmetween spherical shaped solution, LQ optimized
solution and DITAN optimized solution: a) control profile, b) trajectory.
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Fig. 17: Rendezvous mission to Tempel 1. Comparisdetween pseudo-equinoctial shaped solution, LQ
optimized solution and DITAN optimized solution: a)control profile, b) trajectory.

Fig. 18 illustrates the thrust profiles and thgettories corresponding to a rendezvous transféeptune. The
plots include the results from the spherical shgpihe LQ controller and DITAN for minimél, norm of the thrust
and minimal propellant mass. The figures show thatresult from the shaping is closer to the optiprepellant
mass solution than to the-norm one. The thrust profile of the shaped trajgcts close to being bang-off-bang and
the optimal propellant mass trajectory is very &miUnlike the shaped solution, the optimal onespnts a small
maneuver towards the end of the transfer for aeplemange. In fact, a plane change maneuver is effiokent
when performed far from the Sun. Note that the aviitg structure from DITAN would be better defineth a
finer grid.
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- - -LQ improved Shaped .
<o L2 optimized 0.1 ———LQimproved [
= == final mass optimg =2 g « L2 optimized '
= . : "
3 ] O'OSE ‘‘‘‘‘ final mass optimal
2 2 : i
£ €
F - £
SPIbr P— -0.02r
7600 77‘00 7500 0.8 1 1.2 14 1.6 1.8 2
a) Date [MJD2000] b) Date [MJD2000] x1d'

x 10° Trajectory for a launch on 7409.5 MJD2000
57

o
> —— Shaped
— LQ improved
L2 optimized
—— final mass optimal
_5 s
-5 0 5
c) x [km] x16

Fig. 18: Rendezvous mission to Neptune, with an il tangential relative velocity of 3 km/s. Compaison
between spherical shaped solution, LQ optimized adion and DITAN optimized solution: a) first part of
control profile, b) second part of control profile, c) trajectory.
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In some cases, there is no improvement ofLtheorm of the control. This happens when the trajgcis too
close to the central body, in which case the commaresponding to the real equations of motioredjes from the
optimal control of the linearized equations of matias described in technical terms in Section. IDBerwise, the
LQ controller has the tendency to reduce the contiagnitude because a bettgrmorm of the control translates, in
general, to lower peak controls. Applying the LQhiroller to shaped trajectories can therefore redhe risk of

discarding some mission scenarios due to the hiagmnitude of the peak thrust.

E. Computational times

Table 6 summarizes the computational times requisedach tool used in the present study. The shapiethods
require a fraction of a second, depending on thabmu of times the trajectory is recomputed withie Newton
loop in order to satisfy the time of flight constts. The computational effort required by the L@ntoller is

generally one order of magnitude higher, i.e. sdspthan the trajectories generated by shaping.calailation
time depends on the length of the trajectory, &eddlerances used to integrate the Riccati difteabequation and
the equations of motion. This time also depend$i@n many points are used to define the referertee;ntore
points provided along the trajectory, the more tittne interpolations require for the integratorscadculate each
step. The speed of convergence of the low thrusiager DITAN generally depends on the initial tetyrofile,

and varies between 20 and 100 seconds. A bettal igiiess will generally reduce the computatidimaé.

Table 6: Computational effort required by the different trajectory generating and improving tools usedin
this study.

Computational time [s]

Shaping methods ~0.1-0.3
LQ controller ~2-6
DITAN optimizer ~20-100

V. Conclusion

This paper proposed a method to quickly generafgoapnated low-thrust solutions by combining a rove
shaping method with an LQ controller. The propoaggroach provides transfers satisfying the boundanglitions
with practically acceptable control magnitudes &iva computational cost. The novel shaping methes derived
from a mathematical framework that generalizesettisting results in the literature. The pseudo-eqciial shaping
was revisited within the unifying framework, proiid conditions to derive osculating shaped pararsete
describing low-thrust trajectories. The case swgiesented in this paper prove that the novelisbap spherical
coordinates provides, on average, better solutibas the pseudo-equinoctial shaping. For a humbémansfers,

the shaped solution is very close to the fully miged one. When combined with the LQ controllers tthaping
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method can offer a clear decision criterion on fensibility of a large number of transfer soluticios any two
given orbits. Although the applicability of the L&pntroller is limited by the distance from the @¥nof gravity,
initial experiments demonstrate that this limitatioan be removed by iterating the LQ controller dofimited

number of times with little overhead.

Appendix A

This Appendix presents the derivations for the egpions ofv and a in different reference frames. The
resulting expressions are used in particular irctmaputation oD in (15). Three coordinate systems are introduced,

together with their basis vectors:
*  The Cartesian coordinatéS), with basis vectorgi,j k )
e The spherical coordinatéS),with basis vectorsger,eg, %)
e The radial-orthradial-out-of-plane coordinatgy, with basis vectors{e, '8, e;,)

Written in(C), the basis vectors ¢8)are:

cost co®
€ =|sinB cosh
sing ©
-sin®

e, =| cosd

0

(©)

—cosH sinp
e,= € X g =|—sin@sing
cosp ©

Therefore the matrix that transforms the coordimatiea vector if{S)to the coordinates ifC) is:

cosBco® - si® - cdod sin
P (g =| Sinbcosp co® - sifi sih
sing 0 cosh

By differentiating the components of basis vecwir¢S), and usingP,, . =Ry. o = R's.( ¢ One obtains the

expression of the derivatives ef, e, ande, with respect t@, expressed i(S)
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g 0
i: cosp
do ,
¢ C}
—cosp
sing ©
de, _ —;iq:ub
do 0
(s)

The velocity vectorv :% can now be expressed in the spherical coordinlatesying thatr =re, :

o de,
V=r'e +r—=-

de
rl
=|rcosp
LS
The out-of-plane basis vector is therefore:
6 = e xV
&Y
0
T
U
cosq)(s)

WhereU =¢'? +cos¢ . e, is finally expressed in the spherical coordinates:

& =6&x8&
0
cosh
¢ s

1

=

The matrix that transforms the coordinates ofcosrein (R) to the coordinates i(8) is then:

1 0 0
Pr.9=|0 % %
o & cosh

Juo W

Using Py = R5.(s= Rz 5. the velocity vector can be expressedRi
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r
V= rJLT
0
(R

From the latter, one can see that to get the comﬂemféz% in (R), the expressions o?d%’ and % are

requiredRg,  , provides the components %%’ in (R):

0
de
— =[JU
de \/_
0

(R)

d
By differentiating e, and using the expression %%9 and dié’ in spherical coordinates, one geqc% in (S)

first:

Ny
‘(’jeg =| U~ (cosh(¢” - sirp cos)+ @ sid)
U'3’Zcos¢(cosp(¢"— sip cap)+ 2 siin)(s)

Then, withRg, o, the latter is expressed (R):

d%) _ _\éU
U™ (cosp(¢" - sinp cop)+ w sith)(R)
So finally a is obtained in(R):
r"—ruU
A= T ¢y $" —sing cosp

N
S "~ si +Q s
\/U(cosq)(q) sinp cos) sq:)(

R)

One can also check that in the spherical coordiggstema is written:

r'"—ru
a=| 2r'cogp- 2¢' sip
2'p’ +1 (" +sing cos;b)(s)

The expression od in Cartesian coordinates is obtained by applying ., to the latter.
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