Strathprints Home | Open Access | Browse | Search | User area | Copyright | Help | Library Home | SUPrimo

Improved shaping approach to the preliminary design of low-thrust trajectories

Novak, D.M. and Vasile, Massimiliano (2011) Improved shaping approach to the preliminary design of low-thrust trajectories. Journal of Guidance, Control and Dynamics, 34 (1). pp. 128-147. ISSN 0731-5090

[img]
Preview
PDF (Improved shaping approach to the preliminary design of low-thrust trajectories) - Draft Version
Available under License ["licenses_description_unspecified" not defined].

Download (6Mb) | Preview

    Abstract

    This paper presents a general framework for the development of shape-based approaches to low-thrust trajectory design. A novel shaping method, based on a three-dimensional description of the trajectory in spherical coordinates, is developed within this general framework. Both the exponential sinusoid and the inverse polynomial shaping are demonstrated to be particular two-dimensional cases of the spherical one. The pseudoequinoctial shaping is revisited within the new framework, and the nonosculating nature of the pseudoequinoctial elements is analyzed. A two step approach is introduced to solve the time of flight constraint, related to the design of low-thrust arcs with boundary constraints for both spherical and pseudoequinoctial shaping. The solution derived from the shaping approach is improved with a feedback linear-quadratic controller and compared against a direct collocation method based on finite elements in time. The new shaping approach and the combination of shaping and linear-quadratic controller are tested on three case studies: a mission to Mars, a mission to asteroid 1989ML, a mission to comet Tempel-1, and a mission to Neptune.

    Item type: Article
    ID code: 29290
    Notes: Impact Factor 1.031, Half-Life >10.0
    Keywords: shaping approach, trajectories, spherical coordinates, Mars, Neptune, Space exploration, Mechanical engineering and machinery, Motor vehicles. Aeronautics. Astronautics
    Subjects: Technology > Mechanical engineering and machinery
    Technology > Motor vehicles. Aeronautics. Astronautics
    Department: Faculty of Engineering > Mechanical and Aerospace Engineering
    Related URLs:
      Depositing user: Pure Administrator
      Date Deposited: 07 Mar 2011 23:29
      Last modified: 14 Feb 2013 04:41
      URI: http://strathprints.strath.ac.uk/id/eprint/29290

      Actions (login required)

      View Item

      Fulltext Downloads: