Picture of a black hole

Strathclyde Open Access research that creates ripples...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of research papers by University of Strathclyde researchers, including by Strathclyde physicists involved in observing gravitational waves and black hole mergers as part of the Laser Interferometer Gravitational-Wave Observatory (LIGO) - but also other internationally significant research from the Department of Physics. Discover why Strathclyde's physics research is making ripples...

Strathprints also exposes world leading research from the Faculties of Science, Engineering, Humanities & Social Sciences, and from the Strathclyde Business School.

Discover more...

Four-wave mixing with self-phase matching due to collective atomic recoil

Robb, G.R.M. and McNeil, B.W.J. (2005) Four-wave mixing with self-phase matching due to collective atomic recoil. Physical Review Letters, 94 (2). 023901-1. ISSN 0031-9007

[img]
Preview
PDF (strathprints002929.pdf)
strathprints002929.pdf

Download (185kB) | Preview

Abstract

We describe a method for nondegenerate four-wave-mixing in a cold sample of four-level atoms. An integral part of the four-wave-mixing process is a collective instability which spontaneously generates a periodic density modulation in the cold atomic sample with a period equal to half of the wavelength of the generated high-frequency optical field. Because of the generation of this density modulation, phase matching between the pump and scattered fields is not a necessary initial condition for this wave-mixing process to occur; rather the density modulation acts to 'self-phase match' the fields during the course of the wave-mixing process. We describe a one-dimensional model of this process, and suggest a proof-of-principle experiment which would involve pumping a sample of cold Cs atoms with three infrared pump fields to produce blue light.