Picture of person typing on laptop with programming code visible on the laptop screen

World class computing and information science research at Strathclyde...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of Open Access research papers by University of Strathclyde researchers, including by researchers from the Department of Computer & Information Sciences involved in mathematically structured programming, similarity and metric search, computer security, software systems, combinatronics and digital health.

The Department also includes the iSchool Research Group, which performs leading research into socio-technical phenomena and topics such as information retrieval and information seeking behaviour.

Explore

Spectral estimates and basis properties for self-adjoint block operator matrices

Strauss, Michael (2010) Spectral estimates and basis properties for self-adjoint block operator matrices. Integral Equations and Operator Theory, 67 (2). pp. 257-277. ISSN 0378-620X

Full text not available in this repository. Request a copy from the Strathclyde author

Abstract

In the first part of this manuscript a relationship between the spectrum of self-adjoint operator matrices and the spectra of their diagonal entries is found. This leads to enclosures for spectral points and in particular, enclosures for eigenvalues. We also consider graph invariant subspaces, and their corresponding angular operators. The existence of a bounded angular operator leads to basis properties of the first component of eigenvectors of operator matrices for which the corresponding eigenvalues lie in a half line. The results are applied to an example from magnetohydrodynamics.