Picture of smart phone in human hand

World leading smartphone and mobile technology research at Strathclyde...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of Open Access research papers by University of Strathclyde researchers, including by Strathclyde researchers from the Department of Computer & Information Sciences involved in researching exciting new applications for mobile and smartphone technology. But the transformative application of mobile technologies is also the focus of research within disciplines as diverse as Electronic & Electrical Engineering, Marketing, Human Resource Management and Biomedical Enginering, among others.

Explore Strathclyde's Open Access research on smartphone technology now...

Fusion of intensity and inter-component chromatic difference for effective and robust colour edge detection

Ren, Jinchang and Jiang, J. and Wang, D. and Ipson, S. (2010) Fusion of intensity and inter-component chromatic difference for effective and robust colour edge detection. IET Image Processing, 4 (4). pp. 294-301.

Full text not available in this repository. (Request a copy from the Strathclyde author)

Abstract

Edge detection, especially from colour images, plays very important roles in many applications for image analysis, segmentation and recognition. Most existing methods extract colour edges via fusing edges detected from each colour components or detecting from the intensity image where inter-component information is ignored. In this study, an improved method on colour edge detection is proposed in which the significant advantage is the use of inter-component difference information for effective colour edge detection. For any given colour image C, a grey D-image is defined as the accumulative differences between each of its two colour components, and another grey R-image is then obtained by weighting of D-image and the grey intensity image G. The final edges are determined through fusion of edges extracted from R-image and G-image. Quantitative evaluations under various levels of Gaussian noise are achieved for further comparisons. Comprehensive results from different test images have proved that this approach outperforms edges detected from traditional colour spaces like RGB, YCbCr and HSV in terms of effectiveness and robustness.