Picture of a black hole

Strathclyde Open Access research that creates ripples...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of research papers by University of Strathclyde researchers, including by Strathclyde physicists involved in observing gravitational waves and black hole mergers as part of the Laser Interferometer Gravitational-Wave Observatory (LIGO) - but also other internationally significant research from the Department of Physics. Discover why Strathclyde's physics research is making ripples...

Strathprints also exposes world leading research from the Faculties of Science, Engineering, Humanities & Social Sciences, and from the Strathclyde Business School.

Discover more...

Fusion of intensity and inter-component chromatic difference for effective and robust colour edge detection

Ren, Jinchang and Jiang, J. and Wang, D. and Ipson, S. (2010) Fusion of intensity and inter-component chromatic difference for effective and robust colour edge detection. IET Image Processing, 4 (4). pp. 294-301.

Full text not available in this repository. (Request a copy from the Strathclyde author)

Abstract

Edge detection, especially from colour images, plays very important roles in many applications for image analysis, segmentation and recognition. Most existing methods extract colour edges via fusing edges detected from each colour components or detecting from the intensity image where inter-component information is ignored. In this study, an improved method on colour edge detection is proposed in which the significant advantage is the use of inter-component difference information for effective colour edge detection. For any given colour image C, a grey D-image is defined as the accumulative differences between each of its two colour components, and another grey R-image is then obtained by weighting of D-image and the grey intensity image G. The final edges are determined through fusion of edges extracted from R-image and G-image. Quantitative evaluations under various levels of Gaussian noise are achieved for further comparisons. Comprehensive results from different test images have proved that this approach outperforms edges detected from traditional colour spaces like RGB, YCbCr and HSV in terms of effectiveness and robustness.