Picture of athlete cycling

Open Access research with a real impact on health...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of Open Access research papers by Strathclyde researchers, including by researchers from the Physical Activity for Health Group based within the School of Psychological Sciences & Health. Research here seeks to better understand how and why physical activity improves health, gain a better understanding of the amount, intensity, and type of physical activity needed for health benefits, and evaluate the effect of interventions to promote physical activity.

Explore open research content by Physical Activity for Health...

Modelling of content-aware indicators for effective determination of shot boundaries in compressed MPEG videos

Chen, J. and Ren, Jinchang and Jiang, J. (2010) Modelling of content-aware indicators for effective determination of shot boundaries in compressed MPEG videos. Multimedia Tools and Applications, 54 (2). pp. 219-239. ISSN 1380-7501

[img]
Preview
PDF (ChenRenJiang-MTA2010-content-aware-indicators)
shot5.pdf - Preprint

Download (926kB) | Preview

Abstract

In this paper, a content-aware approach is proposed to design multiple test conditions for shot cut detection, which are organized into a multiple phase decision tree for abrupt cut detection and a finite state machine for dissolve detection. In comparison with existing approaches, our algorithm is characterized with two categories of content difference indicators and testing. While the first category indicates the content changes that are directly used for shot cut detection, the second category indicates the contexts under which the content change occurs. As a result, indications of frame differences are tested with context awareness to make the detection of shot cuts adaptive to both content and context changes. Evaluations announced by TRECVID 2007 indicate that our proposed algorithm achieved comparable performance to those using machine learning approaches, yet using a simpler feature set and straightforward design strategies. This has validated the effectiveness of modelling of content-aware indicators for decision making, which also provides a good alternative to conventional approaches in this topic.