Picture of virus under microscope

Research under the microscope...

The Strathprints institutional repository is a digital archive of University of Strathclyde research outputs.

Strathprints serves world leading Open Access research by the University of Strathclyde, including research by the Strathclyde Institute of Pharmacy and Biomedical Sciences (SIPBS), where research centres such as the Industrial Biotechnology Innovation Centre (IBioIC), the Cancer Research UK Formulation Unit, SeaBioTech and the Centre for Biophotonics are based.

Explore SIPBS research

On the identification of continuum concepts and fields with molecular variables

Murdoch, A. Ian (2011) On the identification of continuum concepts and fields with molecular variables. Continuum Mechanics and Thermodynamics, 23 (1). pp. 1-26. ISSN 0935-1175

Full text not available in this repository. (Request a copy from the Strathclyde author)

Abstract

The need to explore a molecular foundation for continuum mechanics is here motivated by recognition of the scale dependence of mass density and boundaries of solid bodies. Modelling molecules as interacting point masses, continuum fields are defined via local spatial averaging using a scale-dependent weighting function. Local balances of linear and angular momentum, and of energy, are established directly, rather than as localised versions of integral relations. Attention is drawn to the non-uniqueness of stress, couple-stress, and heat flux, and to the physical interpretations thereof. A conservation relation for a local measure of inhomogeneity is derived and related to generalised (i.e. tensor valued) moment of momentum. Remarks are made on the scale dependence of the notions of ‘material point’ and ‘boundary’, choices of weighting function, and how further temporal averaging can be implemented, with particular reference to systems whose molecular content changes with time.