Picture of a black hole

Strathclyde Open Access research that creates ripples...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of research papers by University of Strathclyde researchers, including by Strathclyde physicists involved in observing gravitational waves and black hole mergers as part of the Laser Interferometer Gravitational-Wave Observatory (LIGO) - but also other internationally significant research from the Department of Physics. Discover why Strathclyde's physics research is making ripples...

Strathprints also exposes world leading research from the Faculties of Science, Engineering, Humanities & Social Sciences, and from the Strathclyde Business School.

Discover more...

On molecular modelling and continuum concepts

Murdoch, A. Ian (2010) On molecular modelling and continuum concepts. Journal of Elasticity, 100 (1-2). pp. 33-61. ISSN 0374-3535

Full text not available in this repository. (Request a copy from the Strathclyde author)

Abstract

Continuum concepts and field values are related to local (scale-dependent) spacetime atomistic averages. Spatial averaging is effected by both weighting function and cellular localisation procedures, and resulting forms of linear momentum balance are compared. The former yields a local balance directly, with several candidate interaction stress fields. The latter results in a global balance involving a traction field expressible in terms of an interaction stress tensor field. In both approaches the Cauchy stress incorporates distinct interaction and thermokinetic contributions. Inter alia are addressed physically-distinguished choices of weighting function; the scale-dependence of the boundary of a body, its motion and material points thereof; physical interpretations of various candidate interaction stress tensors; temporal averaging and material systems whose content changes with time; and the possible relevance of the latter to investigating a molecular context for configurational forces.