Picture of virus under microscope

Research under the microscope...

The Strathprints institutional repository is a digital archive of University of Strathclyde research outputs.

Strathprints serves world leading Open Access research by the University of Strathclyde, including research by the Strathclyde Institute of Pharmacy and Biomedical Sciences (SIPBS), where research centres such as the Industrial Biotechnology Innovation Centre (IBioIC), the Cancer Research UK Formulation Unit, SeaBioTech and the Centre for Biophotonics are based.

Explore SIPBS research

Competition between CO and N-2 desorption from interstellar ices

Öberg, K.I. and van Broekhuizen, F. and Fraser, H.J. and Bisschop, S.E. and van Dishoeck, E.F. and Schlemmer, S. (2005) Competition between CO and N-2 desorption from interstellar ices. Astrophysical Journal, 621 (1). L33-L36. ISSN 0004-637X

Full text not available in this repository. (Request a copy from the Strathclyde author)

Abstract

Millimeter observations of pre- and protostellar cores show that the abundances of the gas-phase tracer molecules, C18O and N2H+, anticorrelate with each other and often exhibit 'holes' where the density is greatest. These results are reasonably reproduced by astrochemical models, provided that the ratio between the binding energies of N2 and CO, RBE, is taken to be between 0.5 and 0.75. This Letter is the first experimental report of the desorption of CO and N2 from layered and mixed ices at temperatures relevant to dense cores, studied under ultrahigh vacuum laboratory conditions using temperature programmed desorption. From control experiments with pure ices, RBE=0.923±0.003, given Eb(N2-N2)=790±25 K and Eb(CO-CO)=855±25 K. In mixed (CO:N2=1:1) and layered (CO above or below N2) ice systems, both molecules become mobile within the ice matrix at temperatures as low as 20 K and appear miscible. Consequently, although a fraction of the deposited N2 desorbs at lower temperatures than CO, up to 50% of the N2 molecules leave the surface as the CO itself desorbs, a process not included in existing gas-grain models. This codesorption suggests that for a fraction of the frozen-out molecules, RBE is unity. The relative difference between the CO and N2 binding energies as derived from these experiments is therefore significantly less than that currently adopted in astrochemical models.