Picture of a sphere with binary code

Making Strathclyde research discoverable to the world...

The Strathprints institutional repository is a digital archive of University of Strathclyde research outputs. It exposes Strathclyde's world leading Open Access research to many of the world's leading resource discovery tools, and from there onto the screens of researchers around the world.

Explore Strathclyde Open Access research content

Passage-time moments and hybrid zones for the exclusion-voter model

MacPhee, Iain M. and Menshikov, Mikhail V. and Volkov, Stanislav and Wade, Andrew (2010) Passage-time moments and hybrid zones for the exclusion-voter model. Bernoulli, 16 (4). pp. 1312-1342.

[img]
Preview
PDF
0810_0392v2.pdf - Submitted Version

Download (423kB) | Preview

Abstract

We study the non-equilibrium dynamics of a one-dimensional interacting particle system that is a mixture of the voter model and the exclusion process. With the process started from a finite perturbation of the ground state Heaviside configuration consisting of 1’s to the left of the origin and 0’s elsewhere, we study the relaxation time τ, that is, the first hitting time of the ground state configuration (up to translation). We give conditions for τ to be finite and for certain moments of τ to be finite or infinite, and prove a result that approaches a conjecture of Belitsky et al. (Bernoulli 7 (2001) 119–144). Ours are the first non-existence-of-moments results for τ for the mixture model. Moreover, we give almost sure asymptotics for the evolution of the size of the hybrid (disordered) region. Most of our results pertain to the discrete-time setting, but several transfer to continuous-time. As well as the mixture process, some of our results also cover pure exclusion. We state several significant open problems.