Picture of person typing on laptop with programming code visible on the laptop screen

World class computing and information science research at Strathclyde...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of Open Access research papers by University of Strathclyde researchers, including by researchers from the Department of Computer & Information Sciences involved in mathematically structured programming, similarity and metric search, computer security, software systems, combinatronics and digital health.

The Department also includes the iSchool Research Group, which performs leading research into socio-technical phenomena and topics such as information retrieval and information seeking behaviour.

Explore

Fine-scale variability in phytoplankton community structure and inherent optical properties measured from an Autonomous Underwater Vehicle

Cunningham, Alex and McKee, David and Craig, Susanne E. and Tarran, Glen and Widdicombe, Claire (2003) Fine-scale variability in phytoplankton community structure and inherent optical properties measured from an Autonomous Underwater Vehicle. Journal of Marine Systems, 43 (1-2). pp. 51-59. ISSN 0924-7963

Full text not available in this repository. Request a copy from the Strathclyde author

Abstract

The relationship between inherent optical properties (IOPs), phytoplankton community structure and the abundance of suspended particles in the size range 3-500 Am was studied near the Isles of Scilly (UK) in May 2000. Autosub, an autonomous submersible vehicle specifically designed for science missions, was used as an instrument-positioning platform. It carried a CTD system, an ac-9+ dual tube spectrophotometer, a prototype submersible flow cytometer and an Aqua-monitor water sampler. The vehicle made a 10-km transect at constant depth across a boundary between water masses with contrasting remote sensing reflectance, which was located using SeaWiFs ocean colour imagery. This boundary corresponded to a sharp (1 km) transition between one phytoplankton community consisting of coccolithophores, flagellates and dinoflagellates, and a second community dominated by diatoms and flagellates. Inherent optical properties measured along the autonomous underwater vehicle (AUV) track showed marked changes in magnitudes, ratios, spectral shapes and fine-scale spatial variability. These changes were well correlated with variations in the composition of the suspended particle assemblage measured by microscopy and in situ flow cytometry.