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Abstract. This paper studies the large fluctuations of solutions of scalar and finite-dimensional
affine stochastic functional differential equations with finite memory as well as related nonlinear
equations. We find conditions under which the exact almost sure growth rate of the running maxi-
mum of each component of the system can be determined, both for affine and nonlinear equations.
The proofs exploit the fact that an exponentially decaying fundamental solution of the underlying
deterministic equation is sufficient to ensure that the solution of the affine equation converges to a
stationary Gaussian process.
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1. Introduction. Increasingly real-world systems are modelled using stochastic
differential equations with delay, as they represent systems which evolve in a random
environment and whose evolution depends on the past states of the system through
either memory or time delay. Examples include population biology (Mao [41], Mao
and Rassias [42, 43]), neural networks (Blythe, Mao, and Shah [10]), viscoelastic
materials subjected to heat or mechanical stress (Drozdov and Kolmanovskĭı [27],
Caraballo et al. [17], Mizel and Trutzer [46, 47]), or financial mathematics (Anh and
Inoue [1], Ahn, Inoue, and Kasahara [2], Arriojas et al. [9], Hobson and Rogers [30],
Bouchaud and Cont [12]).

In such stochastic models of phenomena in engineering and physics it is often
of great importance to know that the system is stable in the sense that the solution
of the mathematical model converges in some sense to equilibrium. Consequently, a
great deal of mathematical activity has been devoted to the question of stability of
point equilibria of stochastic functional differential equations and also to the rate at
which solutions converge. The literature is extensive, but a flavor of the work can
be found in the monographs of Mao [38, 39], Mohammed [48], and Kolmanovskii and
Myshkis [33].

However, in disciplines such as mathematical biology or finance, it is less usual
for systems to converge to an equilibrium; more typically, the solutions may be stable
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in the sense that there is a stationary distribution to which the solution converges
(see, e.g., Reiss, Riedle, and van Gaans [53], Küchler and Mensch [34], Mao [40]) but
that the solution is unbounded in the sense that the running maximum X∗(t) :=
sup0≤s≤t |X(s)| obeys

lim
t→∞X∗(t) = ∞, with (at least) positive probability.

Therefore, it is natural to ask at what rate the running maxima tend to infinity or,
more precisely, to find a deterministic function ρ with ρ(t) → ∞ as t→ ∞ such that

lim
t→∞

X∗(t)
ρ(t)

= 1 a.s.(1.1)

We call such a function ρ the essential growth rate of the running maxima of X . In
applications this is important, as the size of the large fluctuations may represent the
largest bubble or crash in a financial market, the largest epidemic in a disease model,
or a population explosion in an ecological model.

Despite the importance of this problem, to date there is comparatively little liter-
ature regarding the size of such large fluctuations and, to the best of our knowledge,
no comprehensive theory for linear stochastic functional differential equations. De-
spite this, Mao and Rassias [43] have established upper bounds on the essential growth
rate of the running maxima of solutions of some special stochastic delay differential
equations (SDDEs) with fixed delays, with their results having particular application
to population biology. Their methods enable them to recover results for highly non-
linear systems which are, moreover, sharp in the sense that the rate of growth of the
corresponding nondelay systems is recovered when the fixed delay is set equal to zero.
However, their methods do not automatically extend to differential equations with
more general delay functionals, nor can they obtain lower bounds on the essential
rate of growth of the running maxima.

This paper deals with a simpler class of stochastic functional differential equations
(SFDEs) than [43] (in the sense that the equations are essentially linear) but with
a more general type of delay functional, covering both point and distributed delays
by using measures in the delay. In common with [43], but by different methods, we
obtain an upper bound on the rate of growth of the running maxima. However, in
contrast to [43], we are also able to establish a lower bound on the rate of growth of
the running maxima; indeed, as these bounds are equal, we can determine the exact
almost sure rate of growth of the running maxima. The results exploit the fact that
given an exponentially decaying resolvent, the finite delay in the equation forces the
limiting autocovariance function to decay exponentially fast, so that the solution of
the linear equation is an asymptotically stationary Gaussian process. The results
apply to both scalar and finite-dimensional equations and can, moreover, be extended
to equations with a weak nonlinearity at infinity.

More precisely, we study the asymptotic behavior of the finite-dimensional process
which satisfies

X(t) = ψ(0) +

∫ t

0

L(Xs) ds+

∫ t

0

Σ dB(s), t ≥ 0,(1.2)

X(t) = φ(t), t ∈ [−τ, 0],(1.3)
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where B is an m-dimensional standard Brownian motion, Σ is a d ×m matrix with
real entries, and L : C[−τ, 0] → Rd is a linear functional with τ ≥ 0 and

L(φ) =

∫
[−τ,0]

ν(ds)φ(s), φ ∈ C([−τ, 0];Rd).

The asymptotic behavior of (1.2)–(1.3) is determined in the case when the resolvent
r of the deterministic equation x′(t) = L(xt), t ≥ 0, obeys r ∈ L1([0,∞);Rd×d). In
particular, we show that the running maxima of each component grow according to

lim sup
t→∞

〈X(t), ei〉√
2 log t

= σi, lim inf
t→∞

〈X(t), ei〉√
2 log t

= −σi a.s.,(1.4)

where σi > 0 depends on Σ and the resolvent r. Moreover,

lim sup
t→∞

|X(t)|∞√
2 log t

= max
i=1,...,d

σi a.s.(1.5)

We can also subject (1.2)–(1.3) to a general nonlinear perturbation to get the
equation

dX(t) = (L(Xt) +N(t,Xt)) dt+Σ dB(t), t ≥ 0,(1.6)

and still retain the asymptotic behavior of (1.2)–(1.3). More specifically, if the non-
linear functional N : [0,∞) × C[−τ, 0] → Rd is of smaller than linear order as
‖ϕ‖2 := sup−τ≤s≤0 |ϕ(s)|2 → ∞ in the sense that

lim
‖ϕ‖2→∞

|N(t, φt)|2
‖ϕ‖2 = 0 uniformly in t ≥ 0,(1.7)

then (1.4) and (1.5) still hold.
Linear stochastic delay difference equations are commonly seen in the time series

modelling of interest rates and volatilities in inefficient markets, in which historical
information is incorporated in the dynamical system at any given time. An autore-
gressive (AR) model can be seen as a discretized version of the linear SFDE (1.2)–(1.3)
when the measure ν is purely discrete. More precisely, if the continuous-time equation
has only an instantaneous term and p point delays equally spaced in time, an AR(p)
process results from the discretization. If the mesh size of the discretization is cho-
sen sufficiently small, properties such as stationarity of the continuous equation can
be preserved by the AR model. Conversely, an appropriately parameterized AR(p)
model can converge weakly to the solution of (1.2)–(1.3) with a discrete measure as
the parameter tends to a limit.

An extension and application in which the conditional variance obeys an AR
equation are given by the generalized autoregressive conditional heteroskedasticity
(GARCH) model developed by Bollerslev (cf., e.g., [11, 25]); such models are often
used to model stock volatilities. There is an extensive literature on GARCH and AR
models applied to finance, with nice recent introductions provided in, e.g., [28]. A
wealth of basic results on linear time series models is also contained in the classic
text [14]. The results in this paper concerning Gaussian stationary solutions of linear
SFDEs provide the basic framework for estimating the large deviations of interest rates
or volatilities simulated by continuous-time semimartingale analogues of both scalar
and vector AR processes. An interesting and related literature on continuous-time
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linear stochastic models also exists in the time series literature (see, e.g., [13, 15, 45]),
but the emphasis in those works does not overlap with the thrust of this paper.

The nonlinear problem (1.6) studied in this paper deals only with nonlinearity
that is lower than linear order in the space variable at infinity in a sense made precise
by (1.7). It is therefore interesting to ask how the results here could be developed
to deal with other forms of nonlinearity in the presence of additive noise. In [8] the
asymptotic behavior of scalar SFDEs of the form

dX(t) = (aX(t) + b sup
t−τ≤s≤t

X(s)) dt+ σ dB(t), t ≥ 0,(1.8)

is considered. Note that (1.8) is not in the form of either (1.2)–(1.3) or (1.6) with
the condition (1.7). In [8] it is shown that if the solution is recurrent on the real
line, then the presence of the maximum functional does not significantly change the
essential growth rate of the solution of the related nondelay linear equation dY (t) =
αY (t) dt + σ dB(t), where α < 0. More specifically, it is shown that there exist
deterministic c1, c2 such that

0 < c1 ≤ lim sup
t→∞

|X(t)|√
2 log t

≤ c2 < +∞ a.s.,

which recovers the exact square root logarithmic growth rate of Y

lim sup
t→∞

|Y (t)|√
2 log t

=
|σ|√
2|α| a.s.

Since we demonstrate in the present paper that equations of the form (1.6) have an
exact square root logarithmic growth rate, this suggests that it is linearity, or “near
linearity,” that generates Gaussian-like large fluctuations.

For a scalar autonomous SDE which has no delay and whose solution is stationary
we can apply Motoo’s theorem (cf. [50, 31]) to estimate the growth rate of the running
maximum, even when the drift coefficient is not of linear leading order at infinity (in
contrast to (1.6) and (1.8) with the condition (1.7)). These techniques can even be
extended to finite-dimensional and nonstationary processes (see, e.g., [7]). Similarly,
if some delay terms are introduced into a stationary nonlinear SDE, provided the
order of this delay term is smaller than that of the instantaneous term at infinity, we
show in [5] that the size of the large fluctuations of the nondelay process is preserved.
The essential growth rate in this case depends on the degree of nonlinearity of the
instantaneous term. In contrast to the present paper, however, results obtained in
[5] do not exactly characterize the essential growth rate in the sense of (1.1) or (1.5);
rather results of the form

0 < c1 ≤ lim sup
t→∞

X∗(t)
ρ(t)

≤ c2 < +∞ a.s.

are established for constants c1, c2 and the appropriate increasing function ρ.
This paper is organized as follows. Section 2 gives the background material on

SFDEs and introduces notation used. The main results of the paper are listed and
discussed in section 3. The proof of (1.5) in the scalar case is given in section 4.1. The
proof of (1.4) and (1.5) for the finite-dimensional equation is given in section 4.2, with
the corresponding results for the nonlinear equation being presented in section 4.3.
Finally, the proofs of auxiliary lemmata are given in section 5.
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2. Preliminaries. Let d,m be some positive integers andRd×m denote the space
of all d ×m matrices with real entries. We equip Rd×m with a norm | · | and write
Rd if m = 1 and R if d = m = 1. We denote by R+ the half-line [0,∞). The complex
plane is denoted by C.

Let M([−τ, 0],Rd×d) be the space of finite signed Borel measures on [−τ, 0] with
values in Rd×d. The total variation of a measure ν in M([−τ, 0],Rd×d) on a Borel set
B ⊆ [−τ, 0] is defined by

|ν|(B) := sup

N∑
i=1

|ν(Ei)|,

where (Ei)
N
i=1 is a partition of B and the supremum is taken over all partitions. The

total variation defines a positive scalar measure |ν| in M([−τ, 0],R). If one specifies
temporarily the norm | · | as the l1-norm on the space of real-valued sequences and

identifies Rd×d by Rd2

, one can easily establish for the measure ν = (νi,j)
d2

i,j=1 the
inequality

|ν|(B) ≤ C

d∑
i=1

d∑
j=1

|νi,j |(B) for every Borel set B ⊆ [−τ, 0](2.1)

with C = 1. Then, by the equivalence of every norm on finite-dimensional spaces,
the inequality (2.1) holds true for the arbitrary norms | · | and some constant C > 0.
Moreover, as in the scalar case we have the fundamental estimate∣∣∣∣∣

∫
[−τ,0]

ν(ds) f(s)

∣∣∣∣∣ ≤
∫
[−τ,0]

|f(s)| |ν|(ds)

for every function f : [−τ, 0] → Rd×d′
which is |ν|-integrable.

We first turn our attention to the deterministic delay equation underlying the
SDE (1.2)–(1.3). For a fixed constant τ ≥ 0 we consider the deterministic linear delay
differential equation

x′(t) =
∫
[−τ,0]

ν(du)x(t+ u) for t ≥ 0,(2.2)

x(t) = φ(t) for t ∈ [−τ, 0]
for a measure ν ∈ M([−τ, 0],Rd×d). The initial function φ is assumed to be in the
space C[−τ, 0] := {φ : [−τ, 0] → Rd : continuous}. A function x : [−τ,∞) → Rd

is called a solution of (2.2) if x is continuous on [−τ,∞), its restriction to [0,∞) is
continuously differentiable, and x satisfies the first and second identities of (2.2) for
all t ≥ 0 and t ∈ [−τ, 0], respectively. It is well known that for every φ ∈ C[−τ, 0] the
problem (2.2) admits a unique solution x = x(·, φ).

The fundamental solution or resolvent of (2.2) is the unique locally absolutely
continuous function r : [0,∞) → Rd×d which satisfies

r(t) = Id +

∫ t

0

∫
[max{−τ,−s},0]

ν(du)r(s + u) ds for t ≥ 0,(2.3)

where Id is the d × d identity matrix. It plays a role which is analogous to the
fundamental system in linear ordinary differential equations and the Green function
in partial differential equations. For later convenience we set r(t) = 0 for t ∈ [−τ, 0).
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The solution x(·, φ) of (2.2) for an arbitrary initial segment φ exists, is unique,
and can be represented as

x(t, φ) = r(t)φ(0) +

∫ 0

−τ

∫
[−τ,u]

r(t+ s− u)ν(ds)φ(u) du for t ≥ 0;(2.4)

cf. Diekmann et al. [26, Chapter I].
Define the function hν : C → C by

hν(λ) = det

(
λId −

∫
[−τ,0]

eλs ν(ds)

)
,

where det(A) signifies the determinant of a d× d matrix A. Define also the set

Λ = {λ ∈ C : hν(λ) = 0} .
The function h is analytic, and so the elements of Λ are isolated. Define

v0(ν) := sup {�(λ) : hν(λ) = 0} ,(2.5)

where �(z) denotes the real part of a complex number z. Furthermore, the cardinality
of Λ′ := Λ ∩ {�(λ) = v0(ν)} is finite. Then there exists ε0 > 0 such that for every
ε ∈ (0, ε0) we have

e−v0(ν)tr(t) =
∑

λj∈Λ′
{pj(t) cos(�(λj)t) + qj(t) sin(�(λj)t)} + o(e−εt), t→ ∞,

where pj and qj are matrix-valued polynomials of degree mj − 1, with mj being the
multiplicity of the zero λj ∈ Λ′ of h, and �(z) denoting the imaginary part of a
complex number z. Hence, for every ε > 0 there exists a C(ε) > 0 such that

|r(t)| ≤ C(ε)e(v0(ν)−ε)t, t ≥ 0.(2.6)

Therefore if v0(ν) < 0, then r decays to zero exponentially. This is a simple restate-
ment of Diekmann et al. [26, Theorem 1.5.4 and Corollary 1.5.5]. Furthermore, the
following lemma regarding r is given in [4].

Lemma 1. Let r satisfy (2.3), and let v0(ν) be defined as (2.5). Then the following
statements are equivalent:

(a) v0(ν) < 0.
(b) r decays exponentially as t→ ∞.
(c) r(t) → 0 as t→ ∞.
(d) r ∈ L1(R+;Rd×d).
(e) r ∈ L2(R+;Rd×d).
Let us introduce some notation for (2.2). For a function x : [−τ,∞) → Rd we

define the segment of x at time t ≥ 0 by the function

xt : [−τ, 0] → R
d, xt(u) := x(t+ u).

If we equip the space C[−τ, 0] of continuous functions with the supremum norm,
the Riesz representation theorem guarantees that every continuous functional L :
C[−τ, 0] → Rd is of the form

L(ψ) =

∫
[−τ,0]

ν(du)ψ(u)



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

652 JOHN A. D. APPLEBY, XUERONG MAO, AND HUIZHONG WU

for a d×d matrix-valued measure ν ∈M([−τ, 0],R). Hence, we will write (2.2) in the
form

x′(t) = L(xt) for t ≥ 0, x0 = φ

and assume L to be a continuous and linear functional on C([−τ, 0];Rd).
Let us fix a complete probability space (Ω,F ,P) with a filtration (F(t))t≥0 sat-

isfying the usual conditions, and let (B(t) : t ≥ 0) be a standard m-dimensional
Brownian motion on this space. We study the following SDE with time delay:

dX(t) = L(Xt) dt+Σ dB(t) for t ≥ 0,(2.7)

X(t) = φ(t) for t ∈ [−τ, 0],
where L is a continuous and linear functional on C([−τ, 0];Rd) for a constant τ ≥ 0,
and Σ is a d×m matrix with real entries.

For every φ ∈ C([−τ, 0];Rd) there exists a unique, adapted strong solution
(X(t, φ) : t ≥ −τ) with finite second moments of (2.7) (cf., e.g., Mao [39]). The
dependence of the solutions on the initial condition φ is neglected in our notation in
what follows; that is, we will write x(t) = x(t, φ) and X(t) = X(t, φ) for the solutions
of (2.2) and (2.7), respectively.

By Reiss, Riedle, and van Gaans [54, Lemma 6.1] the solution (X(t) : t ≥ −τ) of
(2.7) obeys a variation-of-constants formula

X(t) =

{
x(t) +

∫ t

0
r(t − s)Σ dB(s), t ≥ 0,
φ(t), t ∈ [−τ, 0],(2.8)

where r is the fundamental solution of (2.2). The process X defined by (2.8) obeys
(2.7) pathwise on an almost sure event.

In this paper, we let 〈·, ·〉 stand for the standard inner product on R
d and | · |2 for

the standard Euclidean norm induced from it. We also let | · |∞ stand for the infinity
norm on Rd, and if φ ∈ C([−τ, 0];Rd), we define ‖φ‖2 = sup−τ≤s≤0 |φ(s)|2. By way of
clarification, we note that here | · |∞ stands for a vector norm rather than a norm on
a space of continuous functions. For i = 1, . . . , d, the ith standard basis vector in Rd

is denoted ei. If X and Y are two random variables, then we denote the correlation
and the covariance between X and Y by Corr(X,Y ) and Cov(X,Y ), respectively.

3. Statement and discussion of main results. In the first part of this section
we state and discuss the main results of the paper. The second subsection is devoted
to a discussion of the limitations of techniques used in this paper and attempts to
give a programme for extending the results to other classes of affine SFDEs to which
the technical assumptions employed here would not apply.

3.1. Main results. We start with some preparatory lemmata used to establish
the almost sure rate of growth of the running maxima of the solution of a scalar
version of (2.7).

Lemma 2. Suppose (an)
∞
n=1 is a real sequence with lim supn→∞ an ≥ 0 and γ is

a nonnegative and nondecreasing sequence, with γ(n) → ∞ as n→ ∞. Then

lim sup
n→∞

max1≤j≤n aj
γ(n)

= lim sup
n→∞

an
γ(n)

.

The above lemma is a slight generalization and analogue of Lemma 2.6.3 in [39],
which is stated at the end of this section. A proof of this result is postponed to the
final section.
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The next result gives precise information on the growth of the running maxima
of a sequence of normal random variables which have an exponentially decaying au-
tocovariance function.

Lemma 3. Suppose (Xn)
∞
n=1 is a sequence of jointly normal standard random

variables satisfying

|Cov(Xi, Xj)| ≤ λ|i−j|

for some λ ∈ (0, 1). Then

lim
n→∞

max1≤j≤nXj√
2 logn

= 1 a.s.(3.1)

These lemmata are used to determine the size of the large fluctuations of the
solution of (2.7) in the scalar case, i.e., the case in which d = 1 and the solution X
of (2.7) is a one-dimensional process. If m > 1 and Σ = (Σ1,Σ2, . . . ,Σm) is a 1 ×m
matrix, we note that the martingale

M(t) =

m∑
j=1

∫ t

0

Σj dBj(s), t ≥ 0,

can be rewritten as

M(t) =

∫ t

0

σ dW (s), t ≥ 0,

where σ = (
∑m

j=1 Σ
2
j)

1/2 and W is a one-dimensional Brownian motion. Therefore,
in the scalar case it suffices to study the equation

dX(t) = L(Xt) dt+ σ dW (t) for t ≥ 0,(3.2)

X(t) = φ(t) for t ∈ [−τ, 0],
where φ ∈ C([−τ, 0];R).

Theorem 1. Suppose that r is the solution of (2.3) with d = 1 and that v0(ν) < 0,
where v0(ν) is defined as (2.5). Let X be the unique continuous adapted process which
obeys (3.2). Then

lim sup
t→∞

|X(t)|√
2 log t

= |σ|
√∫ ∞

0

r2(s) ds =: Γ a.s.(3.3)

Moreover,

lim sup
t→∞

X(t)√
2 log t

= |σ|
√∫ ∞

0

r2(s) ds a.s.,(3.4)

lim inf
t→∞

X(t)√
2 log t

= −|σ|
√∫ ∞

0

r2(s) ds a.s.(3.5)

Theorem 1 can be applied in the case where X is a mean-reverting Ornstein–
Uhlenbeck (OU) process. Consider the OU process governed by the following equation:

dU(t) = −αU(t) dt+ σ dB(t), t ≥ 0,
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with U(0) = u0 and α > 0. Then U is a Gaussian process and has a limiting
distribution N(0, σ2/2α). It can easily be shown that eαtU(t) = u0 +M(t), where

M(t) = σ
∫ t

0 e
αsdB(s) is a continuous martingale with quadratic variation γ(t) :=

σ2((e2αt − 1)/2α. By the time-change theorem for martingales [32, Theorem 3.4.6],
M(γ−1(t)) is a standard Brownian motion. Hence by the law of the iterated logarithm
for standard one-dimensional Brownian motion,

lim sup
t→∞

|M(γ−1(t))|√
2t log log t

= 1 a.s.,

which implies

lim sup
t→∞

|U(t)|√
2 log t

=
|σ|√
2α

a.s.

Thus it can be seen in this simple case that a short and independent proof of (3.3)
can be given. In the general case with linear distributed delay, the solution of (3.2)
can be represented by (2.8). Moreover, under the condition v0(ν) < 0, the solution is
asymptotically Gaussian distributed with mean zero and variance Γ2. However, since
the characteristic equation of r in general has infinitely many roots, it is difficult to
write an explicit solution for r and hence for X . Consequently, the value of Γ is
not easy to compute. Moreover, since the process given by the stochastic integral in
(2.8) is not in general a martingale, the martingale time-change approach given above
for the OU process is not available. We therefore use Mill’s estimate together with
Lemma 3 (both on Gaussian random variables) to prove (3.3) on a sequence of mesh
points an. Then we investigate the behavior of the solution in continuous time by
choosing an so that the distance between the mesh points tends to zero as n → ∞.
This enables us to closely control the behavior of X on the interval [an, an+1].

The condition v0(ν) < 0 is essential in Theorem 1. Appleby, Riedle, and Swords
(cf. [6]) studied the case when v0(ν) ≥ 0. Under some additional conditions on v0(ν)
which assume that the zero of the characteristic equation with the largest real part is
simple and real, their results can be summarized as follows:

(a) If v0(ν) = 0, then

lim sup
t→∞

|X(t)|√
2t log log t

= L1 a.s.

(b) If v0(ν) > 0, then

lim
t→∞ e−v0(ν)tX(t) = L2 a.s.,

where L1 is deterministic and L2 is a random variable. Theorem 1, together with
these two results, connects the location of the roots of the characteristic equation to
the asymptotic behavior of the resolvent r and hence to the asymptotic behavior of
the stochastic process X . If the underlying deterministic equation is stable in such a
way that the resolvent tends to zero (v0(ν) < 0), then the process is asymptotically
stationary and Gaussian. If mean-reverting forces in the system are just compensated
by positive feedback away from the underlying deterministic equilibrium (v0(ν) = 0),
then the process obeys the law of the iterated logarithm and is nonstationary (but
has increments which are asymptotically stationary), and therefore has properties
similar to a standard Brownian motion, while at the same time it possesses dependent
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increments. Finally, if the resolvent is exponentially unstable (v0(ν) > 0), then the
process is exponentially transient.

An interesting and special case to which Theorem 1 can be applied arises when
X is governed by the generalized Langevin equation

dX(t) = [aX(t) + bX(t− τ)] dt+ σ dB(t), t ≥ 0,(3.6)

where a, b ∈ R and τ > 0. Küchler and Mensch [34] studied this equation in great
detail. One important contribution of their work is that the conditions on a, b, and
τ which ensure the stationarity of the solution are classified. An explicit solution
of the resolvent r in terms of elementary functions can be found by the method of
steps, which is also given in [34]. Therefore the constant Γ for the solution of (3.6)
can be approximated to an arbitrary precision by an explicit formula with finitely
many terms. Naturally, for a general r, we can use deterministic numerical methods
to approximate Γ to any desired precision, but such methods will not yield a formula
for the approximation.

We can extend the result of Theorem 1 to the solution of the general finite-
dimensional equation (2.7).

Theorem 2. Suppose that r is the solution of (2.3) and that v0(ν) < 0, where
v0(ν) is defined as (2.5). Let X be the unique continuous adapted d-dimensional
process which obeys (2.7). Then, for each 1 ≤ i ≤ d,

lim sup
t→∞

Xi(t)√
2 log t

= σi and lim inf
t→∞

Xi(t)√
2 log t

= −σi a.s.,(3.7)

where

σi =

√√√√ m∑
k=1

∫ ∞

0

ρ2ik(s) ds(3.8)

and ρ(t) = r(t)Σ ∈ Rd×m. Moreover,

lim sup
t→∞

|X(t)|∞√
2 log t

= max
i=1,...,d

σi a.s.(3.9)

Our final main result shows that (2.7) can be perturbed by a nonlinear functional
N in the drift (which is of lower than linear order at infinity) without changing
the asymptotic behavior of the underlying affine SFDE. To make this claim more
precise, we characterize the perturbing nonlinear functional N as follows. Suppose
N : [0,∞)× C[−τ, 0] → Rd obeys the following:

For all n ∈ N there exists a Kn > 0 such that if ϕ, ψ ∈ C([−τ, 0];Rd)(3.10)

obey ‖ϕ‖2 ∨ ‖ψ‖2 ≤ n, then |N(t, ϕ)−N(t, ψ)|2 ≤ Kn‖ϕ− ψ‖2,
and N is continuous in its first argument;

and

lim
‖ϕ‖2→∞

|N(t, ϕ)|2
‖ϕ‖2 = 0 uniformly in t;(3.11)

and

t �→ |N(t, 0)|2 is bounded on [0,∞).(3.12)
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Before stating our main result, we examine the hypotheses (3.10)–(3.12) and prove an
important estimate deriving therefrom. By the hypothesis (3.11), we mean that for
every ε > 0 there is a Φ = Φ(ε) > 0 such that if ϕ ∈ C([−τ, 0];Rd) obeys ‖ϕ‖2 ≥ Φ(ε),
we then have

|N(t, ϕ)|2 ≤ ε‖ϕ‖2 for all t ≥ 0.

By (3.12), we have that there is an n̄ ≥ 0 such that |N(t, 0)|2 ≤ n̄ for all t ≥ 0. Also
by (3.10), for all ϕ such that ‖ϕ‖2 ≤ �Φ(ε)� (where �x� denotes the smallest integer
greater than or equal to x ≥ 0) we have that there is a K(ε) = K�Φ(ε)� such that

|N(t, ϕ)|2 ≤ |N(t, ϕ)−N(t, 0)|2 + |N(t, 0)|2 ≤ K(ε)‖ϕ‖2 + n̄ ≤ K(ε)�Φ(ε)�+ n̄.

Therefore with L(ε) := K(ε)�Φ(ε)�+ n̄ we have

|N(t, ϕ)|2 ≤ L(ε) for all t ≥ 0 and all ‖ϕ‖2 ≤ Φ(ε).

Hence for every ε > 0 there exists L(ε) > 0 such that

|N(t, ϕ)|2 ≤ L(ε) + ε‖ϕ‖2 for all t ≥ 0 and all ϕ ∈ C([−τ, 0];Rd).(3.13)

The hypothesis (3.12) ensures that the functional N is (in some sense) close to being
an autonomous functional or is bounded by an autonomous functional.

We study the following nonlinear SDE with time delay:

dX(t) = (L(Xt) +N(t,Xt)) dt+Σ dB(t) for t ≥ 0,(3.14)

X(t) = φ(t) for t ∈ [−τ, 0],

where L is a continuous and linear functional on C([−τ, 0];Rd) for a constant τ ≥ 0,
and Σ is a d×m matrix with real entries.

Since L is linear and N obeys (3.10) and (3.11), for every φ ∈ C([−τ, 0];Rd)
there exists a unique, adapted strong solution (X(t, φ) : t ≥ −τ) with finite second
moments of (3.14) (cf., e.g., Mao [39]).

Theorem 3. Suppose that N obeys (3.10), (3.11), and (3.12). Also suppose that
r is the solution of (2.3) and v0(ν) < 0, where v0(ν) is defined as (2.5). Let X be the
unique continuous adapted d-dimensional process which obeys (3.14). Then, for each
1 ≤ i ≤ d,

lim sup
t→∞

Xi(t)√
2 log t

= σi and lim inf
t→∞

Xi(t)√
2 log t

= −σi a.s.,(3.15)

where σi is given by (3.8). Moreover,

lim sup
t→∞

|X(t)|∞√
2 log t

= max
1≤i≤d

σi a.s.(3.16)

Since, in general, it is not possible to obtain a representation that is analogous
to (2.8) for nonlinear equations such as (3.14), the proof cannot directly rely on
Gaussianity of the process. Instead, by using a comparison argument, we conclude
that if the nonlinear term in the drift is smaller than linear order at infinity (cf.
assumption (3.11)), the size of the large fluctuations of a Gaussian stationary process
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is retained. Due to the presence of the supremum norm estimates for N , the proof
involves the construction of Halanay-type functional differential inequalities. This
technique is frequently used in [8].

The following auxiliary lemma is required in the proof of Theorem 3; its proof is
deferred to the final section.

Lemma 4. Let ϑ be positive and nondecreasing with ϑ(t−T )/ϑ(t) → 1, as t→ ∞,
for all T ≥ 0. If κ is nonnegative with

∫∞
0
κ(s) ds ∈ (0,∞), then

lim
t→∞

1

ϑ(t)

∫ t

0

κ(t− s)ϑ(s) ds =

∫ ∞

0

κ(s) ds.

We also need the following continuous analogue of Lemma 2, which appeared as
Lemma 2.6.3 in [39].

Lemma 5. Suppose y : [0,∞) → [0,∞), and let ϑ : [0,∞) → (0,∞) be a
nondecreasing function with ϑ(t) → ∞ as t→ ∞. Then

lim sup
t→∞

max0≤s≤t y(s)

ϑ(t)
= lim sup

t→∞
y(t)

ϑ(t)
.

3.2. Alternative approaches and generalization. Although we have suc-
ceeded in establishing satisfactory results on the large fluctuations of solutions of
(2.7), our results hinge on two key properties of the differential resolvent r satisfying
(2.3). The first is that r is in C1((0,∞);Rd); the second is that r decays exponen-
tially fast because v0(ν) < 0. However, it is easy to formulate affine SFDEs for which
neither of these properties holds.

For instance, consider the scalar Volterra equation

dX(t) =

∫
[0,t]

ν(ds)X(t− s) dt+Σ dB(t), t ≥ 0,

where ν ∈ M([0,∞);R). Suppose now that ν(ds) = aδ0(ds) + k(s) ds, where k is
a positive, continuous, and integrable function, δ0 is the Dirac measure at 0, and
a+

∫∞
0
k(s) ds < 0. In this case, X still obeys the variation-of-constants formula

X(t) = r(t)X(0) +

∫ t

0

r(t− s)Σ dB(s), t ≥ 0,

where in this case the differential resolvent r obeys

r′(t) =
∫
[0,t]

ν(ds)r(t − s), t ≥ 0; r(0) = 1.

The conditions on a and k guarantee that r ∈ L1(0,∞) (see [16]). However, if k decays
subexponentially in a sense defined in, e.g., [3] (which implies that k(t)eεt → ∞ as
t→ ∞ for each ε > 0), then it can be shown that t �→ r(t)/k(t) tends to a nontrivial
limit as t → ∞ (see, e.g., [3]). Therefore r cannot decay exponentially, and so we
cannot use Lemma 3 to obtain a lower bound.

On the other hand, if we consider the scalar neutral affine SFDE

d

(
X(t)−

∫
[−τ,0]

μ(ds)X(t+ s)

)
=

∫
[−τ,0]

ν(ds)X(t+ s) dt+Σ dB(t), t ≥ 0,
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then X obeys the variation-of-constants formula

X(t) = x(t) +

∫ t

0

ρ(t− s)Σ dB(s), t ≥ 0,

where x is the solution of the underlying deterministic linear neutral differential equa-
tion with the same initial condition as X , and ρ is the resolvent given by

d

dt

(
ρ(t)−

∫
[−τ,0]

μ(ds)ρ(t+ s)

)
=

∫
[−τ,0]

ν(ds)ρ(t + s), t ≥ 0;

ρ(0) = 1; ρ(t) = 0, t ∈ [−τ, 0).

If ρ is integrable, then we are guaranteed that ρ will decay to zero exponentially fast
(cf. e.g., [29]). However, we are not guaranteed that ρ will be differentiable, even
though ρ is continuous (cf., e.g., [29]). Therefore, the proof of the upper bound on
|X | in Theorem 1 cannot be continued in the same manner as outlined in section 4.

By examining these two examples, it seems to be advantageous to develop general
methods to determine the asymptotic behavior of the process

X̃(t) =

∫ t

0

r(t − s) dB(s), t ≥ 0,(3.17)

where r ∈ L2([0,∞);Rd×d) is continuous, in order to determine asymptotic properties
for general affine SFDEs, including the important classes of Volterra and neutral equa-
tions. We identify several strategies which are worthy of investigation, and some ideas
as to their possible implementation are given here. One might also hope that these
methods could unify (and perhaps simplify) the proofs for all the above-mentioned
classes of affine equations. To make our discussion simple, we focus on the scalar case
(d = 1).

The first alternative strategy derives from the fact that the process X̃ is nearly
stationary. The main idea is to consider the asymptotic behavior of X̃ by writing

X̃(t) =

∫ t

−∞
r(t− s) dB(s) −

∫ 0

−∞
r(t− s) dB(s) =: X1(t) +X2(t),(3.18)

where the standard Brownian motion B has been extended independently to (−∞, 0).
Before proceeding further, we interpret and justify the existence of the infinite

integrals in (3.18). Since r ∈ L2(0,∞) and r is continuous, for each fixed t ≥ 0, the
infinite integral

−X2(t) =

∫ 0

−∞
r(t − s) dB(s)

can be defined as the almost sure or mean square limit as T → ∞ of the well-defined
Gaussian random variables ∫ 0

−T

r(t− s) dB(s),

with the limit X2 itself being Gaussian. If we think of X2 as a process, we view X2(t)
for all t ≥ 0 as random variables measurable with respect to the common σ-algebra
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FB(0). Once this has been defined, we can define X1(t) according to

X1(t) =

∫ t

−∞
r(t − s) dB(s) :=

∫ t

0

r(t− s) dB(s) +

∫ 0

−∞
r(t− s) dB(s).

Since X̃ is adapted to FB, it follows that X1 is also adapted to FB.
The first term on the right-hand side of (3.18) is a stationary Gaussian process

with autocovariance function c given by

c(h) =

∫ ∞

0

r(u)r(u + h) du, h ≥ 0.

By a result of Marcus [44] we can show that X1 obeys

lim sup
t→∞

|X1(t)|√
2 log t

≤
√∫ ∞

0

r2(s) ds a.s.

On the other hand, by [51, Theorem 5.2] we have that c(h) log h → 0 as h → ∞
implies

lim inf
t→∞

{
sup

0≤s≤t
X1(s)−

√∫ ∞

0

r2(s) ds
√
2 log t

}
≥ 0 a.s.

Combining these results gives

lim sup
t→∞

X1(t)√
2 log t

= lim sup
t→∞

|X1(t)|√
2 log t

=

√∫ ∞

0

r2(s) ds a.s.

Then Theorem 1 follows provided that we can prove that

lim
t→∞

X2(t)√
2 log t

= 0 a.s.(3.19)

The proof of the claim (3.19) is made plausible by the fact that (a) X2 is a Gaussian
process and that (b) E[X2

2 (t)] =
∫∞
t r2(u) du → 0 as t → ∞. The latter obser-

vation seems to suggest that X2 should be asymptotically dominated by X1, which
is a process with constant rather than asymptotically vanishing variance. This ap-
proach seems to hold out the prospect that the assumption that r (and therefore the
autocovariance function c) decays exponentially can be significantly relaxed.

Another related approach is to use results of Deo [24, 23] on nonstationary Gaus-
sian sequences of random variables. This avoids a proof of an asymptotic estimate
such as (3.19) for the residual process X2. Since it transpires that the upper bound
on X̃ can be established without the need for exponential estimates on r, it remains
to establish that this upper bound is sharp by determining a related lower bound on
the growth of the large fluctuations. In order to prove this, one might consider a
sequence of Gaussian random variables sampled from the continuous-time process X̃,
and this is what motivates our proposal to use Deo’s results. He shows that if there
is a sequence of N(0, 1) random variables (Xn)n≥1 for which c(i, j) = E[XiXj ] obeys

∞∑
n=1

δ2n < +∞, where δn := sup
|i−j|≥n

|c(i, j)|,(3.20)
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then

lim
n→∞ max

1≤j≤n

{
Xj −

√
2 logn

}
= 0 a.s.

The essential thrust of our proof is then as follows: first, we construct a sequence
of normal random variables Xn := X̃(n)/

√
v(n), where X̃ is given by (3.17). By

virtue of the fact that r ∈ L2(0,∞), we then would hope to show that the sequence
(Xn)n≥1 obeys (3.20). This would enable us to prove our results without a stipulation
on the exponential decay of r. Our conjecture is given some weight by the fact that
r ∈ L1(0,∞) forces the upper estimate on the autocovariance function c̄ of X̃ given by

c̄(h) =

∫ ∞

0

|r(u)||r(u + h)| du

to obey c̄ ∈ L2(0,∞). This fact is in some sense analogous to the discrete square
summability condition (3.20), and the aim of our proof is then to demonstrate that
c ∈ L2(0,∞) implies (3.20), perhaps when taken in conjunction with some harmless
technical conditions on r.

Yet another potential approach is to consider the process X̃ defined in (3.17)
as the increment process of a nonstationary Gaussian process. In recent years an
impressive literature has developed on the asymptotic and path behavior of increments
of Gaussian processes, in particular of fractional Brownian motion. To give a full
picture of this research would be difficult, but some representative papers relevant to
this discussion include [18, 19, 20, 21, 49, 56, 57]. A tentative manner in which this
theory might be applied is as follows. Suppose (as in the case of fractional Brownian
motion) that a nonstationary Gaussian process can be represented in the integral form

X(t) =

∫ t

0

(c+ ρ(t− s)) dB(s), t ≥ 0,

where c > 0, and suppose that ρ is in L2(0,∞) and obeys ρ(t) = 0 for all t < 0. Let
δ > 0. Then the so-called lag increment X(t)−X(t− δ) is given by∫ t

0

ρδ(t− s) dB(s), t ≥ δ,

where ρδ(t) = ρ(t) − ρ(t − δ) is in L2(0,∞). Hence the lag increment is of a form
similar to the classes of processes considered in this paper. Therefore a study of the
large fluctuations of the lag increments of the nonstationary Gaussian process X is
strongly related to determining the large deviations of the processes considered in this
work. However, the question remains open as to how one might choose the lag δ in
an appropriate manner in order to apply this theory to the processes studied here.

Finally, it should be remarked that solutions of affine SDDEs can be thought
of as solutions of a Cauchy problem in a Hilbert space (see, e.g., Da Prato and
Zabczyk [22]). One of the advantages of this approach is that the solutions in this
abstract setting are Markovian, whereas solutions in the original finite-dimensional
space are in general non-Markovian. This method of studying SDDEs has led to
excellent results on qualitative features on the existence and uniqueness of stationary
solutions of such equations (see, e.g., Riedle and van Neerven [55], Reiss, Riedle, and
van Gaans [53]), but to the best of the authors’ knowledge it has not yet been applied
to obtain quantitative results of the type demanded in the current work. Moreover,
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since solutions exhibit correlation over time whether they are Markov or not, it is not
immediately clear that the autocorrelation of solutions, which is at the heart of the
difficulties involved in determining large fluctuations, would be appreciably simplified
in this setting. However, such an abstract approach should be of great value for
determining the large deviation properties of solutions of retarded affine stochastic
partial differential equations (see, e.g., [36, 37]), which would not yield readily to the
real-space techniques developed in this paper.

4. Proofs of theorems.

4.1. Proof of Theorem 1. Since v0(ν) < 0, we have that r(t) → 0 as t → ∞,
so the first term on the right-hand side of (2.8) tends to zero as t → ∞. We analyze
the behavior of the second term. We first establish

lim sup
t→∞

|X(t)|√
2 log t

≤ |σ|
√∫ ∞

0

r2(s) ds a.s.(4.1)

Define

X̃(t) := σ

∫ t

0

r(t− s) dB(s).

It is helpful to define

v(t) = σ2

∫ t

0

r2(s) ds, t ≥ 0.(4.2)

Then X̃(t) is normally distributed with mean 0 and variance v(t), where v is given
by (4.2). Since r ∈ L1([0,∞);R), by Lemma 1 we have r(t) → 0 as t → ∞. By
continuity, r is bounded, and so r ∈ L2([0,∞);R). Therefore

v(t) = σ2

∫ t

0

r2(s) ds ≤ σ2

∫ ∞

0

r2(s) ds =: Γ2.

Let θ ∈ (0, 1). Clearly limt→∞ v(t) = Γ2 and limn→∞ v(nθ) = Γ2. If Z(nθ) :=
X̃(nθ)/

√
v(nθ), by using a proof similar to that in Lemma 8 in section 5, we obtain

lim sup
n→∞

|Z(nθ)|√
2 logn

≤ 1 a.s.

Therefore

lim sup
n→∞

|X̃(nθ)|√
2 logn

≤ Γ a.s.(4.3)

Now, by a stochastic Fubini theorem (cf., e.g., [52, Chapter IV.6, Theorem 64]), we
get

X̃(t) = σ

∫ t

0

(
1 +

∫ t−s

0

r′(u)du
)
dB(s)(4.4)

= σB(t) + σ

∫ t

0

∫ t

s

r′(u − s)du dB(s)

= σB(t) + σ

∫ t

0

∫ u

0

r′(u− s) dB(s) du.
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Therefore

|X̃(t)| ≤ σ|B(t) −B(nθ)|+ σ

∣∣∣∣
∫ t

nθ

∫ u

0

r′(u− s) dB(s) du

∣∣∣∣+ |X̃(nθ)|.(4.5)

We now consider each of the three terms on the left-hand side of (4.5). By the
properties of a standard Brownian motion, we have

P

[
sup

nθ≤t≤(n+1)θ
|B(t) −B(nθ)| > 1

]
≤ 2P

[
sup

0≤t≤(n+1)θ−nθ

B(t) > 1

]

= 2P[|B((n+ 1)θ − nθ)| > 1]

= 4P

[
Z >

1√
(n+ 1)θ − nθ

]
,

where Z is a standard normal random variable. Since {(n + 1)θ − nθ}/nθ−1 → θ as
n→ ∞, by Mill’s estimate and the Borel–Cantelli lemma, there exists N(ω) ∈ N such
that for all n > N

sup
nθ≤t≤(n+1)θ

|B(t)−B(nθ)| ≤ 1 a.s.

That is,

lim sup
n→∞

sup
nθ≤t≤(n+1)θ

|B(t)−B(nθ)| ≤ 1 a.s.(4.6)

For the double integral term in (4.5), define

Un := sup
nθ≤t≤(n+1)θ

∣∣∣∣
∫ t

nθ

∫ u

0

r′(u− s) dB(s) du

∣∣∣∣ .
Then, by Hölder’s inequality

E[U2k
n ] ≤ E

[
sup

nθ≤t≤(n+1)θ

(∫ t

nθ

∣∣∣∣
∫ u

0

r′(u− s) dB(s)

∣∣∣∣ du
)2k

]

≤ E

[
sup

nθ≤t≤(n+1)θ
(t− nθ)2k−1

∫ t

nθ

∣∣∣∣
∫ u

0

r′(u− s) dB(s)

∣∣∣∣
2k

du

]

= E

[(
(n+ 1)θ − nθ

)2k−1
∫ (n+1)θ

nθ

∣∣∣∣
∫ u

0

r′(u− s) dB(s)

∣∣∣∣
2k

du

]

=
(
(n+ 1)θ − nθ

)2k−1
∫ (n+1)θ

nθ

E

∣∣∣∣
∫ u

0

r′(u− s) dB(s)

∣∣∣∣
2k

du.

Now, for u ≥ 0,
∫ u

0 r
′(u − s) dB(s) is a Gaussian process with mean 0 and variance∫ u

0 r
′(s)2 ds. Since r decays exponentially by Lemma 1, the variance is bounded above

by
∫∞
0
r′(s)2 ds =: L. Hence there exists Ck > 0 such that

∫ (n+1)θ

nθ

E

∣∣∣∣
∫ u

0

r′(u − s) dB(s)

∣∣∣∣
2k

du ≤
∫ (n+1)θ

nθ

CkL
k du = CkL

k
(
(n+ 1)θ − nθ

)
.
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By Chebyshev’s inequality, we therefore get

P(|Un| ≥ 1) ≤ E[U2k
n ] ≤ CkL

k
(
(n+ 1)θ − nθ

)2k
.

If we choose an integer k ≥ (1− θ)−1, as {(n+1)θ−nθ}/nθ−1 → θ as n→ ∞, by the
Borel–Cantelli lemma we obtain

lim sup
n→∞

sup
nθ≤t≤(n+1)θ

∣∣∣∣
∫ t

nθ

∫ u

0

r′(u− s)dB(s) du

∣∣∣∣ ≤ 1 a.s.(4.7)

Gathering the results from (4.3) to (4.7), we see that

lim sup
n→∞

sup
nθ≤t≤(n+1)θ

|X̃(t)|√
2 log t

≤ Γ√
θ

a.s.,

which implies

lim sup
t→∞

|X̃(t)|√
2 log t

≤ Γ√
θ

a.s.

Finally, letting θ → 1, we obtain

lim sup
t→∞

|X(t)|√
2 log t

= lim sup
t→∞

|X̃(t)|√
2 log t

≤ Γ a.s.,

which is (4.1). We next show that

lim sup
t→∞

|X(t)|√
2 log t

≥ Γ a.s.(4.8)

Define the discrete Gaussian process (X̃(n))n≥1, where X̃(n) := σ
∫ n

0 r(n− s) dB(s).

X̃(n) has variance v2(n) := σ2
∫ n

0 r2(s)ds, so (Zn)
∞
n=1 is a sequence of standard normal

random variables, where Zn := X̃(n)/v(n).
We next prove that there exists a constant α ∈ (0, 1) such that |Cov(Zi, Zj)| ≤

α|i−j|. To find this constant α, let h ≥ 0 and n = m+ h. Then

|Cov(Zm+h, Zm)| = | ∫m

0 r(s + h)r(s) ds|√∫m+h

0 r2(s)ds
∫m

0 r2(s)ds
.

By the Cauchy–Schwarz inequality

|Cov(Zm+h, Zm)|2 ≤
∫m

0
r2(s+ h) ds∫m+h

0 r2(s) ds
= 1−

∫ h

0
r2(s) ds∫m+h

0 r2(s) ds
.

Next define Γ1 =
∫∞
0
r2(s) ds. Then

∫m+h

0
r2(s) ds ≤ Γ1, so

|Cov(Zm+h, Zm)|2 ≤ 1−
∫ h

0
r2(s) ds∫m+h

0 r2(s) ds
≤ 1−

∫ h

0
r2(s) ds

Γ1
=

∫∞
h
r2(s) ds

Γ1
.(4.9)

Now define

α := sup
h∈N

α(h), where α(h) := exp

[
1

2h
log

∫∞
h r2(s) ds

Γ1

]
.
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We show that α ∈ (0, 1). Since r ∈ L1(0,∞), by (2.6) there exist C > 0 and λ > 0
such that |r(t)| ≤ Ce−λt for all t ≥ 0. Hence∫∞

h r2(s) ds

Γ1
≤ C2

Γ1

∫ ∞

h

e−2λs ds =
C2e−2λh

2λΓ1
,

so

1

2h
log

∫∞
h r2(s) ds

Γ1
≤ −λ+

1

2h
log

C2

2λΓ1
.(4.10)

Let �x� denote the minimum integer which is greater than x ∈ R. If h′ := 1 +
�(1/λ) log(C2/2λΓ1)�, then for all h > h′

λ

2
>

1

2h
log

C2

2λΓ1
.(4.11)

Substituting (4.11) into (4.10), we obtain 0 < α(h) ≤ e−λ/2 for all h > h′. For h < h′,
since r is continuous and r(0) = 1,

∫ h

0
r2(s) ds > 0 for all h > 0, and therefore we

have that
∫∞
h
r2(s) ds <

∫∞
0
r2(s) ds for all h > 0. This implies α(h) ∈ (0, 1) for all

integers h such that 0 < h ≤ h′, and so α ∈ (0, 1). Therefore

α ≥ exp
1

2h
log

∫∞
h r2(s) ds

Γ1
, h ∈ N,

which gives ∫∞
h
r2(s) ds

Γ1
≤ α2h, h ∈ {0} ∪ N.(4.12)

Combining (4.9) and (4.12), we get |Cov(Zn, Zm)| ≤ α|n−m|. Thus by Lemma 3,

lim
n→∞

max1≤j≤n X̃(n)/v(n)√
2 logn

= 1 a.s.

Since Lemma 2 implies

lim sup
n→∞

|X̃(n)|/v(n)√
2 logn

= lim sup
n→∞

max1≤j≤n |X̃(n)|/v(n)√
2 logn

,(4.13)

combining these relations gives

lim sup
n→∞

|X̃(n)|/v(n)√
2 logn

= 1 a.s.

Therefore

lim sup
t→∞

|X(t)|
Γ
√
2 log t

= lim sup
t→∞

|X̃(t)|
Γ
√
2 log t

= lim sup
t→∞

|X̃(t)|/v(t)√
2 log t

≥ lim sup
n→∞

|X̃(n)|/v(n)√
2 logn

,

which implies (4.8). Since (4.1) also holds, we have established (3.3).
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It remains to prove (3.4) and (3.5). We prove (3.4). First, note by (3.3) that

lim sup
t→∞

X(t)√
2 log t

≤ lim sup
t→∞

|X(t)|√
2 log t

= Γ a.s.

By the definitions of X̃, Z, and v, we deduce that

lim sup
t→∞

X(t)√
2 log t

= lim sup
t→∞

X̃(t)√
2 log t

≥ lim sup
n→∞

X̃(n)√
2 logn

= lim sup
n→∞

Znv(n)√
2 logn

.

Using the fact that v(n) → Γ as n→ ∞ and Lemmas 2 and 3, we obtain

lim sup
n→∞

Znv(n)√
2 logn

= lim sup
n→∞

Zn√
2 logn

· Γ = lim sup
n→∞

max1≤j≤n Zj√
2 logn

· Γ

= lim
n→∞

max1≤j≤n Zj√
2 logn

· Γ = Γ,

and so (3.4) holds. Equation (3.5) may be obtained by a symmetric argument.

4.2. Proof of Theorem 2. Let x be the solution of (2.2). Then x(t) → 0 as
t→ ∞, because v0(ν) < 0. Then X̃(t) = X(t)− x(t), where

X̃(t) :=

∫ t

0

r(t− s)Σ dB(s), t ≥ 0.

Notice that X̃(t) ∈ Rd for each t ≥ 0. Also X̃(t) =
∫ t

0 ρ(t − s) dB(s), t ≥ 0, where
ρ(t) = r(t)Σ is a d×m matrix-valued function in which each entry must obey |ρij(t)| ≤
Ce−v0(ν)t/2, t ≥ 0, for some C > 0. Hence X̃i(t) := 〈X(t), ei〉 obeys

X̃i(t) =

m∑
j=1

∫ t

0

ρij(t− s) dBj(s), t ≥ 0.

Define ρi(t) ≥ 0 with ρ2i (t) =
∑m

j=1 ρ
2
ij(t), t ≥ 0. Then X̃i(t) is normally distributed

with mean 0 and variance vi(t) =
∫ t

0
ρ2i (s) ds. Since ρi ∈ L2(0,∞), we have that

vi(t) → ∫∞
0 ρ2i (s) ds =

∫∞
0

∑m
j=1 ρ

2
ij(t) dt =: σ2

i as t → ∞. Moreover, |ρi(t)| ≤
Cme−v0(ν)t/2, t ≥ 0. The argument used to prove (4.8) now establishes

lim sup
t→∞

|X̃i(t)|√
2 log t

≥ σi a.s.(4.14)

We now wish to prove

lim sup
t→∞

|X̃i(t)|√
2 log t

≤ σi a.s.(4.15)

We first note for each θ > 0 that the argument used to prove (4.3) can be used to
establish

lim sup
n→∞

|X̃i(n
θ)|√

2 log(nθ)
≤

√
σ2
i

θ
a.s.(4.16)
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In a manner similar to (4.4), we can rewrite X̃ according to

X̃i(t) =

m∑
j=1

∫ t

0

(
ρij(0) +

∫ t−s

0

ρ′ij(u) du
)
dBj(s)

=

m∑
j=1

ρij(0)Bj(t) +

m∑
j=1

∫ t

0

∫ u

0

ρ′ij(u − s) dBj(s) du.

Hence for t ∈ [nθ, (n+ 1)θ] we get

X̃i(t)− X̃i(n
θ) =

m∑
j=1

ρij(0)
(
Bj(t)−Bj(n

θ)
)
+

m∑
j=1

∫ t

nθ

∫ u

0

ρ′ij(u − s) dBj(s) du,

which implies

sup
nθ≤t≤(n+1)θ

|X̃i(t)− X̃i(n
θ)| ≤

m∑
j=1

|ρij(0)| sup
nθ≤t≤(n+1)θ

|Bj(t)−Bj(n
θ)|+

m∑
j=1

U (i,j)
n ,

where we have defined

U (i,j)
n = sup

nθ≤t≤(n+1)θ

∣∣∣∣
∫ t

nθ

∫ u

0

ρ′ij(u− s) dBj(s) du

∣∣∣∣ .
Then, using the technique used to prove (4.7), we can show that

lim sup
n→∞

U (i,j)
n ≤ 1 a.s.

By (4.6), we have

lim sup
n→∞

sup
nθ≤t≤(n+1)θ

|Bj(t)−Bj(n
θ)| ≤ 1 a.s.

Therefore,

lim sup
n→∞

supnθ≤t≤(n+1)θ |X̃i(t)− X̃i(n
θ)|√

2 lognθ
= 0 a.s.(4.17)

Using this estimate and (4.16), we obtain

lim sup
n→∞

sup
nθ≤t≤(n+1)θ

|X̃i(t)|√
2 log t

≤
√
σ2
i

θ
a.s.,

which implies

lim sup
t→∞

|X̃i(t)|√
2 log t

≤
√
σ2
i

θ
a.s.

Letting θ → 1 through the rational numbers implies (4.15). Combining (4.14) and
(4.15) yields

lim sup
t→∞

|X̃i(t)|√
2 log t

≤ σi a.s.

Proceeding as at the end of Theorem 1, we can also establish (3.7).
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To prove (3.9), note that there is an i∗ ∈ {1, . . . , d} such that σi∗ = max1≤i≤d σi.
Next, note for each t ≥ 0 that

max
1≤i≤d

|Xi(t)| = max(|X1(t)|, |X2(t)|, . . . , |Xi∗(t)|, . . . , |Xd(t)|) ≥ |Xi∗(t)|.

Hence

lim sup
t→∞

max1≤i≤d |Xi(t)|√
2 log t

≥ lim sup
t→∞

|Xi∗(t)|√
2 log t

= σi∗ = max
i=1,...,d

σi a.s.(4.18)

Let p be an integer greater than unity. Note that max1≤i≤d |xi| ≤ (
∑d

i=1 |xi|p)1/p, so
we have (

lim sup
t→∞

max1≤i≤d |Xi(t)|√
2 log t

)p

= lim sup
t→∞

(max1≤i≤d |Xi(t)|)p
(
√
2 log t)p

≤ lim sup
t→∞

∑d
i=1 |Xi(t)|p
(
√
2 log t)p

≤
d∑

i=1

lim sup
t→∞

|Xi(t)|p
(
√
2 log t)p

=

d∑
i=1

(
lim sup
t→∞

|Xi(t)|√
2 log t

)p

=

d∑
i=1

σp
i .

Hence

lim sup
t→∞

max1≤i≤d |Xi(t)|√
2 log t

≤
(

d∑
i=1

σp
i

)1/p

a.s.

Letting p→ ∞ through the natural numbers yields

lim sup
t→∞

max1≤i≤d |Xi(t)|√
2 log t

≤ max
1≤i≤d

σi a.s.,(4.19)

since (
∑d

i=1 σ
p
i )

1/p → max1≤i≤d σi as p → ∞. Combining (4.18) and (4.19) yields
(3.9).

4.3. Proof of Theorem 3. By (3.11), for any φ ∈ C([−τ, 0];Rd) and ε > 0,
there exists L(ε) > 0 such that (3.13) holds, viz.,

|N(t, φ)|2 ≤ L(ε) + ε‖φ‖2 for all (t, φ) ∈ (0,∞)× C([−τ, 0];Rd).

Choose ε
∫∞
0

|r(s)|2 ds < 1/2. Suppose Y obeys (2.7) with Y (t) = φ(t) = X(t) for t ∈
[−τ, 0]. Define Z by Z(t) = X(t)−Y (t) for t ≥ −τ . Then Z ′(t) = L(Zt)+N(t, Yt+Zt)
for t > 0 and Z(t) = 0 for t ∈ [−τ, 0]. Hence

Z(t) =

∫ t

0

r(t− s)N(s, Ys + Zs) ds, t ≥ 0.

Therefore for t ≥ 0

|Z(t)|2 ≤
∫ t

0

|r(t − s)|2
{
L(ε) + ε sup

s−τ≤u≤s
|Y (u) + Z(u)|2

}
ds.



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

668 JOHN A. D. APPLEBY, XUERONG MAO, AND HUIZHONG WU

Hence, with fε(t) := L(ε)
∫∞
0

|r(s)|2 ds+ε
∫ t

0
|r(t−s)|2 sups−τ≤u≤s |Y (u)|2 ds, we have

|Z(t)|2 ≤ fε(t) + ε

∫ t

0

|r(t− s)|2 sup
s−τ≤u≤s

|Z(u)|2 ds

≤ fε(t) + ε

∫ t

0

|r(t− s)|2
(

sup
−τ≤u≤0

|Z(u)|2 + sup
0≤u≤s

|Z(u)|2
)
ds

≤ fε(t) + ε

∫ t

0

|r(t− s)|2 sup
0≤u≤s

|Z(u)|2 ds.

Now, define Z∗(t) = sup0≤s≤t |Z(s)|2, f∗
ε (T ) = sup0≤t≤T fε(t). Then, for T > 0, we

have

Z∗(T ) = sup
0≤t≤T

|Z(t)|2 ≤ f∗
ε (T ) + ε sup

0≤t≤T

∫ t

0

|r(t− s)|2Z∗(s) ds.(4.20)

Now Z∗(s) ≤ Z∗(t) for 0 ≤ s ≤ t, so as r ∈ L1(0,∞) we get

ε sup
0≤t≤T

∫ t

0

|r(t − s)|2Z∗(s) ds ≤ ε sup
0≤t≤T

Z∗(t)
∫ t

0

|r(t − s)|2 ds

= ε sup
0≤t≤T

Z∗(t)
∫ t

0

|r(s)|2 ds

≤ ε sup
0≤t≤T

Z∗(t)
∫ ∞

0

|r(s)|2 ds

≤ ε

∫ ∞

0

|r(s)|2 ds sup
0≤t≤T

Z∗(t)

= ε

∫ ∞

0

|r(s)|2 ds · Z∗(T ).

Inserting this into (4.20) gives

Z∗(T ) ≤ f∗
ε (T ) + εZ∗(T )

∫ ∞

0

|r(s)|2 ds ≤ f∗
ε (T ) +

1

2
Z∗(T ).

Hence Z∗(t) ≤ 2f∗
ε (t) for all t ≥ 0. Now, recall that

fε(t) = L(ε)

∫ ∞

0

|r(s)|2 ds+ ε

∫ t

0

|r(t − s)|2 sup
s−τ≤u≤s

|Y (u)|2 ds,

so as Y (t) = φ(t) for t ∈ [−τ, 0], and setting Y ∗(t) = sup0≤s≤t |Y (s)|2, we get

fε(t) ≤ L(ε)

∫ ∞

0

|r(s)|2 ds+ ε

∫ t

0

|r(t − s)|2
(

sup
−τ≤u≤0

|φ(u)|2 + sup
0≤u≤s

|Y (u)|2
)
ds,

so

fε(t) ≤
(
L(ε) + ε sup

−τ≤u≤0
|φ(u)|2

)∫ ∞

0

|r(s)|2 ds(4.21)

+ ε

∫ t

0

|r(t − s)|2Y ∗(s) ds.
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Now, by Lemma 5, we get

lim sup
t→∞

Y ∗(t)√
2 log t

= lim sup
t→∞

|Y (t)|2√
2 log t

.

We already know from Theorem 2 that there is a c0 > 0 such that

lim sup
t→∞

|Y (t)|∞√
2 log t

= c0 a.s.,

so by norm equivalence there is a deterministic c1 > 0 such that

lim sup
t→∞

|Y (t)|2√
2 log t

≤ c1 a.s.

Hence by Lemma 5 we obtain

lim sup
t→∞

Y ∗(t)√
2 log t

≤ c1 a.s.

Therefore, by Lemma 4, we have

lim sup
t→∞

1√
2 log t

∫ t

0

|r(t− s)|2Y ∗(s) ds ≤ c1

∫ ∞

0

|r(s)|2 ds a.s.

And so, from (4.21), we get

lim sup
t→∞

fε(t)√
2 log t

≤ εc1

∫ ∞

0

|r(s)|2 ds a.s.

By Lemma 5, this implies that

lim sup
t→∞

f∗
ε (t)√
2 log t

≤ εc1

∫ ∞

0

|r(s)|2 ds a.s.

Recalling that Z∗(t) ≤ 2f∗
ε (t) for all t ≥ 0, we have

lim sup
t→∞

Z∗(t)√
2 log t

≤ 2εc1

∫ ∞

0

|r(s)|2 ds a.s.(4.22)

Perusal of the above proof shows that the almost sure event (Ω∗ say) on which (4.22)
holds is independent of ε, where ε < (1/2)(

∫∞
0

|r(s)|2ds)−1. Therefore, for each
ω ∈ Ω∗, we may let ε→ 0+ to obtain

lim sup
t→∞

Z∗(t, ω)√
2 log t

= 0.
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Hence

lim sup
t→∞

Z∗(t)√
2 log t

= 0 a.s.

That is,

lim
t→∞

|X(t)− Y (t)|2√
2 log t

= 0 a.s.,

and, moreover,

lim
t→∞

|Xi(t)− Yi(t)|√
2 log t

= 0 a.s.(4.23)

Now, it is known from Theorem 2 that

lim sup
t→∞

|Yi(t)|√
2 log t

= σi a.s.,

where σi is given by (3.8). Thus

lim sup
t→∞

|Xi(t)|√
2 log t

≤ lim sup
t→∞

|Yi(t)|√
2 log t

+ lim sup
t→∞

|Xi(t)− Yi(t)|√
2 log t

= σi a.s.

Similarly

lim sup
t→∞

|Xi(t)|√
2 log t

≥ lim sup
t→∞

( |Yi(t)|√
2 log t

− |Xi(t)− Yi(t)|√
2 log t

)

= lim sup
t→∞

|Yi(t)|√
2 log t

= σi a.s.

Combining these inequalities, we get

lim sup
t→∞

|Xi(t)|√
2 log t

= σi a.s.

Write Xi(t) = Xi(t)− Yi(t) + Yi(t). Using the fact that

lim sup
t→∞

Yi(t)√
2 log t

= σi a.s.,

by (3.7), together with (4.23), we get the first part of (3.15). One proceeds similarly
to the end of Theorem 1 to obtain the second part of (3.15). We may proceed as in
the proof of Theorem 2 to show that these limits imply

lim sup
t→∞

|X(t)|∞√
2 log t

= max
1≤i≤d

σi a.s.,

proving the result.
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5. Auxiliary results.

5.1. Proof of Lemma 2. Define

L = lim sup
n→∞

an
γ(n)

, M := lim sup
n→∞

max1≤j≤n aj
γ(n)

.

Then L ≤ M . Since lim supn→∞ an ≥ 0 and γ is positive, L ≥ 0. In the case that
L = +∞, we automatically have M = +∞. Therefore we focus on the case where
L ∈ [0,∞).

For every ε > 0 there existsN1(ε) ∈ N such that an/γ(n) ≤ L+ε for all n ≥ N1(ε).
Define A(ε) = max1≤j≤N1(ε) aj . Since γ(n) → ∞ as n → ∞, there exists N2(ε) ∈ N

such that γ(n)(L + ε) > A(ε) for all n ≥ N2(ε). Now, let n ≥ N1(ε) + 1. Then, as γ
is nondecreasing, we have

max
1≤j≤n

aj = max

(
A(ε), max

N1(ε)+1≤j≤n
aj

)

≤ max

(
A(ε), max

N1(ε)+1≤j≤n
γ(j)(L+ ε)

)
= max (A(ε), γ(n)(L+ ε)) .

Define N(ε) = max(N1(ε) + 1, N2(ε)). Let n ≥ N(ε). Then γ(n)(L + ε) > A(ε) and
also max1≤j≤n aj ≤ max (A(ε), γ(n)(L + ε)), so

max
1≤j≤n

aj ≤ max (A(ε), γ(n)(L + ε)) = γ(n)(L+ ε) for all n ≥ N(ε).

Since ε > 0 is arbitrary, we therefore have

lim sup
n→∞

max1≤j≤n aj
γ(n)

≤ L,

or M ≤ L. But since L ≤ M , we have M = L in the case when L ≥ 0 is finite and
hence the result.

5.2. Proof of Lemma 4. Without loss of generality, let
∫∞
0 κ(s) ds = 1. For

every ε > 0, there is T = T (ε) > 0 such that
∫∞
T κ(s) ds < ε. For t ≥ T , we have

(κ ∗ ϑ)(t)
ϑ(t)

−
∫ t

0

κ(s) ds =

∫ T

0

κ(s)

(
ϑ(t− s)

ϑ(t)
− 1

)
ds

+

∫ t

T

κ(s)

(
ϑ(t− s)

ϑ(t)
− 1

)
ds.

Now, as
∫∞
0
κ(s) ds = 1 and ϑ is an increasing function,

∣∣∣∣∣
∫ T

0

κ(s)

(
ϑ(t− s)

ϑ(t)
− 1

)
ds

∣∣∣∣∣ ≤ 1− ϑ(t− T )

ϑ(t)
.

Moreover, as κ is nonnegative and ϑ is increasing, we have∣∣∣∣
∫ t

T

κ(s)

(
ϑ(t− s)

ϑ(t)
− 1

)
ds

∣∣∣∣ =
∫ t

T

κ(s)

(
1− ϑ(t− s)

ϑ(t)

)
ds ≤

∫ ∞

T

κ(s) ds.
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Thus ∣∣∣∣
∫ t

0

κ(s)ϑ(t− s)

ϑ(t)
ds−

∫ t

0

κ(s) ds

∣∣∣∣ ≤ 1− ϑ(t− T )

ϑ(t)
+

∫ ∞

T

κ(s) ds

< 1− ϑ(t− T )

ϑ(t)
+ ε.

Using ϑ(t− T )/ϑ(t) → 1 as t→ ∞ and then letting ε→ 0 yields the result.

5.3. Proof of Lemma 3. Define Φ(x) = 1√
2π

∫ x

−∞ e−u2/2 du. Mill’s estimate

tells us that

1− Φ(x) ≤ 1√
2π

1

x
e−

x2

2 , x > 0.

Indeed, we also have

lim
x→∞

1− Φ(x)

1√
2π

1
xe

−x2

2

= 1.(5.1)

In order to prove Lemma 3, we need some existing results about the fluctuations of
stationary Gaussian sequences. First, we state the normal comparison lemma.

Lemma 6. Suppose (Xn)
∞
n=1 is a stationary sequence of standard normal vari-

ables. If (rh)h≥0 is the autocorrelation function of X so that Corr(Xi, Xj) = r|i−j|
and

Mn = max
1≤j≤n

Xj,

then for any real sequence (un)n≥1 we have

|P[Mn ≤ un]− Φ(un)
n| ≤ Kn

n∑
h=1

|rh| exp
(
− u2n
1 + |rh|

)
,(5.2)

where K depends on δ = suph≥1 |rh| < 1.
The proof of this result may be found in Leadbetter, Lindgren, and Rootzén [35,

pp. 81–85]. Another result related to the normal comparison lemma is the following,
also given in [35, p. 84].

Lemma 7. Let Xj , Yj for j = 1, . . . , n be sequences of standard normal random
variables which satisfy

Cov(Xi, Xj) ≤ Cov(Yi, Yj)

for all i, j = 1, . . . , n. If MX
n = max1≤j≤nXj and MY

n = max1≤j≤n Yj , then

P[MX
n ≤ u] ≤ P[MY

n ≤ u]

for all u ∈ R.

We require the following results about sequences of identically distributed normal
random variables. The first result is elementary but allows us to refer to appropriate
estimates.
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Lemma 8. If (Xn)
∞
n=1 is a sequence of jointly normal standard random variables,

then

lim sup
n→∞

|Xn|√
2 logn

≤ 1 a.s.(5.3)

Moreover,

lim sup
n→∞

max1≤j≤nXj√
2 logn

≤ 1 a.s.(5.4)

Proof. For every ε > 0, Mill’s estimate gives

P[|Xn| >
√
2(1 + ε) logn] ≤ 2√

2π

1√
2(1 + ε) logn

1

n1+ε
,

so by the Borel–Cantelli lemma, for each ε > 0, we have

lim sup
n→∞

|Xn|√
2(1 + ε) logn

≤ 1 a.s.

By letting ε→ 0 through rational numbers we get (5.3). Moreover,

lim sup
n→∞

max1≤j≤nXj√
2 logn

≤ lim sup
n→∞

max1≤j≤n |Xj|√
2 logn

= lim sup
n→∞

|Xn|√
2 logn

≤ 1 a.s.,

where we have used Lemma 2 at the penultimate step.

We will now use Lemma 6 to obtain the following useful estimate on the maxima
of exponentially correlated sequences.

Lemma 9. Let (Xn)
∞
n=1 be a stationary sequence of standard normal random

variables with Cov(Xi, Xj) = λ|i−j| for some λ ∈ (0, 1). If α > 4, then

∞∑
n=2

P

[
max1≤j≤nXj√

logn
>

√
α

]
<∞.(5.5)

Proof. Define un =
√
α logn and Ψ(x) = 1−Φ(x). By Mill’s estimate we therefore

have

1− Φ(un)
n = 1− (1−Ψ(un))

n ≤ nΨ(un) ≤ 1√
2π

1√
α logn

1

n
α
2 −1

.(5.6)

If h := |i − j|, define rh = λh and Bn = Kn
∑n

h=1 |rh| exp( −u2
n

1+|rh| ). From Lemma 6

we have

P[Mn > un] ≤ 1− Φ(un)
n +Bn.(5.7)

With the choice of un we easily obtain, for some 0 < K2 <∞,

Bn ≤ K
1

n
α
2 −1

n∑
h=1

|rh| < K2

n
α
2 −1

.(5.8)
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Taking (5.6), (5.7), and (5.8) together we see that there exist 0 < K1 <∞ and N ∈ N

such that for all n ≥ N

P[Mn >
√
α logn] ≤ K1

1√
α logn

1

n
α
2 −1

+K2
1

n
α
2 −1

,

from which (5.5) follows.
We are now in a position to prove Lemma 3.
Proof. In Lemma 8, we have already established

lim sup
n→∞

max1≤j≤nXj√
2 logn

≤ 1 a.s.

Therefore, it suffices to prove

lim inf
n→∞

max1≤j≤nXj√
2 logn

≥ 1 a.s.

To do this let Y = (Yn)n≥1 be a sequence of jointly normal standard random variables
satisfying Cov(Yi, Yj) = λ|i−j|. The sequence Y has two important properties. First,
it dominates X in the sense made precise by Lemma 7; the second vital property is
motivated presently. To see that Y dominates X , letMX

n ,M
Y
n have the same meaning

as in Lemma 7. Thus, for all ε > 0, we have by Lemma 7

P[MX
n ≤ (1− ε)

√
2 logn] ≤ P[MY

n ≤ (1− ε)
√
2 logn].

The proof is thus complete (after taking ε ↓ 0) by the Borel–Cantelli lemma if we can
show

∞∑
n=1

P[MY
n ≤ (1− ε)

√
2 logn] <∞.(5.9)

The second important property of the auxiliary process Y is that the exactly geometric
decay in the autocovariance function enables us to construct (via Gram–Schmidt
orthonormalization) a sequence of independent Gaussian random variables, whose
large fluctuations are then readily determined by use of both Borel–Cantelli lemmata.

The remainder of the proof is devoted to demonstrating (5.9). For all ε ∈ (0, 1)
there exists k1(ε) ∈ N such that for all k > k1(ε)

λk ≤ 2

3

(√
9 + 8ε− 4ε2 − 3(1− ε)

)
=: α(ε) > 0.

Fix k = k1(ε) + 1. Note that α(ε) is the unique positive root of fε(x) = −2ε+ ε2 +
3x(1− ε) + 13

4 x
2, so we have

μ :=
1− ε+ 3

2λ
k

√
1− λ2k

∈ (0, 1).(5.10)

We now seek a bound on P[max1≤j≤N Yj+k ≤ (1− ε)
√
2 logN ]. To do this, we notice

that the integer n is well defined by nk ≤ N < (n+ 1)k. Then

max1≤j≤N Yj+k√
2 logN

≥ max1≤j≤nk Yj+k√
2 logN

≥ max1≤j≤nk Yj+k − λkYj√
2 logN

− λk
max1≤j≤nk −Yj√

2 logN
.
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We now use the observation that P[U + V ≥ u] ≤ P[U ≥ v] + P[V ≥ u − v] for any
random variables U and V and constants u and v to obtain the bound

P

[
max1≤j≤N Yj+k√

2 logN
≤ 1− ε

]

≤ P

[
max1≤j≤nk Yj+k − λkYj√

2 logN
− λk

max1≤j≤nk −Yj√
2 logN

≤ 1− ε

]

≤ P

[
λk

max1≤j≤nk −Yj√
2 logN

≥ 3

2
λk

]
+ P

[
−max1≤j≤nk Yj+k − λkYj√

2 logN
≥ ε− 1− 3

2
λk

]

= P

[
max1≤j≤nk Yj√

2 logN
≥ 3

2

]
+ P

[
max1≤j≤nk Yj+k − λkYj√

2 logN
≤ 1− ε+

3

2
λk

]

≤ P

[
max1≤j≤N Yj√

2 logN
≥ 3

2

]
+ P

[
max1≤j≤nk Yj+k − λkYj√

2 logN
≤ 1− ε+

3

2
λk

]
,

(5.11)

where we exploit the symmetry of distribution of the random variable Yj at the
penultimate step, and nk ≤ N at the last step. We now wish to show that both terms
on the right-hand side of (5.11) are summable over N . For the first term, we note
that the estimate (5.5) in Lemma 9 with α = 9/2 yields

∞∑
N=2

P

[
max1≤j≤N Yj√

2 logN
≥ 3

2

]
<∞.(5.12)

It now remains to obtain a further estimate on the second term on the right-hand side
of (5.11).

To do this, for each j = 1, . . . , k define the sequence of random variables

U (j)
m =

Yj+mk − λkYj+(m−1)k√
1− λ2k

.

Without loss of generality, let l �= m and notice that Cov(U
(j)
l , U

(j)
m ) = 0, while

Var(U j
m) = 1 for allm and j. Thus, for each j = 1, . . . , k, {U (j)

m }∞m=1 is an independent
and identically distributed sequence of standard normal random variables. Further

define V
(j)
m = max1≤l≤m U

(j)
l , and aN = μ

√
2 logN , where μ is given by (5.10). Then,

by (5.10), the independence of (U
(1)
n )n≥1, and the fact that all of the random variables

U
(1)
n are standard normal random variables, we get

P

[
max1≤j≤nk Yj+k − λkYj√

2 logN
≤ 1− ε+

3

2
λk

]
= P

[
max
1≤j≤k

V (j)
n ≤ aN

]

≤ P

[
V (1)
n ≤ aN

]
= Φ(aN )n

≤ Φ(aN )
N
k −1.(5.13)

We now merely need to show that Φ(aN )
N
k −1 is summable overN . To do this, observe

that since aN → ∞ and Φ(aN ) → 1 as N → ∞, (5.1) and L’Hôpital’s rule yield

lim
N→∞

logΦ(aN )N/k−1

(Nk − 1) 1√
2π

1
aN
e−a2

N/2
= lim

N→∞
logΦ(aN )

1− Φ(aN )

1− Φ(aN )
1√
2π

1
aN
e−a2

N/2
= −1.
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Hence

lim
N→∞

logΦ(aN )N/k−1

1
kμ

√
2π

1√
2 logN

N1−μ2 = −1,

and therefore, as μ ∈ (0, 1),

∞∑
N=2

Φ(aN )N/k−1 <∞.(5.14)

Therefore, by (5.11), (5.12), (5.13), and (5.14), we get

∞∑
N=1

P

[
max

1≤j≤N
Yj+k ≤ (1− ε)

√
2 logN

]
<∞.

The stationarity of the sequence now proves the assertion.
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[17] T. Caraballo, I. D. Chueshov, P. Maŕın-Rubio, and J. Real, Existence and asymptotic
behaviour for stochastic heat equations with multiplicative noise in materials with memory,
Discrete Contin. Dyn. Syst., 18 (2007), pp. 253–270.

[18] G. J. Chen, F. C. Kong, and Z. Y. Lin, Answers to some questions about increments of a
Wiener process, Ann. Probab., 14 (1986), pp. 1252–1261.

[19] Y. K. Choi and J.-H. Choi, On lag increments of a Gaussian process, Commun. Korean Math.
Soc., 15 (2000), pp. 379–390.

[20] Y. K. Choi and K. S. Hwang, How big are the lag increments of a Gaussian process?, Comput.
Math. Appl., 40 (2000), pp. 911–919.
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