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Abstract

Using concrete examples, we discuss the current and potential use of
stochastic ordinary differential equations (SDEs) from the perspective of
applied and computational mathematics. Assuming only a minimal back-
ground knowledge in probability and stochastic processes, we focus on
aspects that distinguish SDEs from their deterministic counterparts. To
illustrate a multiscale modelling framework, we explain how SDEs arise
naturally as diffusion limits in the type of discrete-valued stochastic mod-
els used in chemical kinetics, population dynamics, and, most topically,
systems biology. We outline some key issues in existence, uniqueness and
stability that arise when SDEs are used as physical models, and point
out possible pitfalls. We also discuss the use of numerical methods to
simulate trajectories of an SDE and explain how both weak and strong
convergence properties are relevant for highly-efficient multilevel Monte
Carlo simulations. We flag up what we believe to be key topics for future
research, focussing especially on nonlinear models, parameter estimation,
model comparison and multiscale simulation.

1 Introduction

In the context of modelling physical systems, uncertainty may arise in several
ways.

• Directly observable quantities may be subject to measurement error; for
example, initial levels in a population model may not be known exactly.
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• Parameters that cannot be directly measured may be inferred by calibrating
against observations of the system; for example, unknown rate constants in
a chemical kinetics model may be fitted against a time series of concentra-
tion levels.

• Effects that would be unnecessarily expensive or complicated to measure or
model may be summarized stochastically; for example, rather than treat-
ing the roll of a die as a nonlinear dynamical system it may be adequate
to represent the outcome in terms of a discrete random variable with six
possible values.

There are, of course, many ways to introduce randomness into a mathematical
model. We focus here on the particular context of ordinary, initial value, stochas-
tic differential equations (SDEs) in Itô form. This class of models is proving
popular across a wide range of application areas. In particular their usefulness in
mathematical finance and systems biology has dramatically raised the profile of
SDEs. Our aim here is to provide background information and give an overview
of some of the key modelling and simulation issues that are likely to have the
highest profile over the next few years, with the caveat that we make no attempt
to give an exhaustive coverage.

In keeping with the scope and readership of this journal, we have taken an
applied mathematics viewpoint. We assume that the reader is familiar with
deterministic ordinary differential equations (ODEs) and their numerical approx-
imation, but only require a minimal level of familiarity with probability theory
(including basic concepts such as normal/Gaussian random variables, probabil-
ity density functions, independence, expected value, variance and Monte Carlo
simulation). We generally focus on a pathwise, or trajectory-based interpretation
of an SDE solution, and, where possible, we contrast ideas and results for SDEs
with their ODE counterparts. Throughout, the capitalized mathematical font is
reserved for random variables, or more generally, stochastic processes.

For further background reading on SDEs we suggest, in roughly increasing
order of technical difficulty, [39], [9], [37], [41] and [33].

2 SDEs and Their Numerical Simulation

Given x0 ∈ R
m and a function f : R

m → R
m, the recurrence relation

xn+1 = xn + hf(xn) (1)

is familiar as an Euler approximation to the ODE system x′(t) = f(x(t)). Here,
the fixed parameter h > 0 is called the stepsize, and xn approximates x(tn), where
tn = nh. Of course, (1) is also an extremely useful analytical tool; by considering
the limit h → 0 it is possible to establish existence and uniqueness results for the
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underlying ODE. In a similar manner, we may interpret an SDE as the limiting
process that arises from a discrete-time approximation. To do this, we will give
each iterate in (1) an appropriately scaled Gaussian “kick,” so that

Xn+1 = Xn + hf(Xn) +
√

h g(Xn) Vn, (2)

where

• g : R
m → R

m×d is a given function, and

• the {Vn}n≥0 are independent vector-valued random variables such that each
of the d independent components of Vn has the standard normal distribu-
tion.

We see that the magnitude of the random kick in (2) depends upon the current
approximation Xn, via the value of g(Xn). We also see that the kick scales like√

h—this turns out to be the right amount of noise to produce limiting trajectories
that are continuous but not deterministic.

So, given appropriate functions f and g, and an initial condition X(0), we
can think of an SDE solution X(t) as being whatever process arises when we take
the h → 0 limit in (2). More precisely, just as in the deterministic case, we can
fix t and consider the limit as h → 0 of XN where Nh = t. Of course, for each
fixed t this construction for X(t) leads to a vector-valued random variable, and
hence as t varies X(t) is a vector-valued stochastic process. In summary, there
are three main ingredients for an SDE.

• The function f : R
m → R

m, called the drift coefficient, plays a similar role
to the right-hand side of an ODE.

• The function g : R
m → R

m×d, called the diffusion coefficient, governs how
the current state of the system affects the size of the noise contribution.

• The initial condition, X(0), may be deterministic, but more generally it is
allowed to be a random variable.

The standard notation for specifying such an SDE is

dX(t) = f(X(t))dt + g(X(t))dW (t), X(0) given, (3)

where W (t) is a vector-valued process whose d components represent independent
Brownian motions. We will use this notation here, while emphasizing that dX(t),
dt and dW (t) have no meaning on their own; we simply regard (3) as a shorthand
way of saying that the process X(t) arises from the h → 0 limit in (2).

A simple and very widely used example is given by the scalar (m = d = 1)
linear case

f(x) = ax, g(x) = bx, (4)
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Figure 1: Upper: Fifty paths from the iteration (2) with x(0) = 1, f(x) = 0.06x,
g(x) = 0.4x and h = 0.01. Lower: histogram of 5 × 104 binned values for time
t = 1, with density function (5) superimposed.

where a and b > 0 are constants. In Figure 1 we fix x(0) = 1, a = 0.06, b = 0.4
and take h = 0.01 in (2). The upper picture in Figure 1 shows 50 different
paths. So, in each case a Gaussian increment Vn was produced from a call to
a standard normal pseudo-random number generator. In this manner, at the
final time, t = 1, each path produces a single number that, in the h → 0 limit,
may be regarded as a sample from the distribution of the random variable X(1)
describing the SDE solution at t = 1. In the lower picture of Figure 1 we have
shaded a histogram for 5 × 104 such samples.

The upper picture shows a trajectory-wise view of an SDE—individual paths
are seen to evolve over time. The lower picture applies at a fixed point in time
and considers the distribution of values. From the latter perspective, for this
simple SDE it can be shown, given a deterministic initial condition, x(0), that
the random variable X(t) has a lognormal probability density function given by

p(y) =
exp

(
−(log(y/x(0))−(a− 1

2
b2)t)2

2b2t

)

yb
√

2πt
, for y > 0, (5)

and p(y) = 0 for y ≤ 0. This density function for t = 1 is superimposed in the
lower picture of Figure 1, and we see that it matches the histogram closely.

Of course, the hand-waving arguments leading from (2) to (3) are not valid
for arbitrary choices of drift and diffusion coefficient. Generally the question of
existence and uniqueness of solutions for SDEs is more delicate than the ODE
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case. Most standard texts impose the condition that f and g in (3) are globally
Lipschitz—there is assumed to be a constant L such that

‖f(u) − f(v)‖ ≤ L‖u − v‖, (6)

‖g(u)− g(v)‖ ≤ L‖u − v‖, (7)

for all u, v ∈ R
m, see, for example, [33, 37]. In the ODE case, the right-hand

side of a typical ODE model will not satisfy the condition (6), but it is often
natural to argue that a local Lipschitz condition will hold—a suitable constant
L = L(R) will exist for any ball of radius R about the origin. In this way,
physical arguments may suggest that the ODE solution will stay bounded, in
which case f may be re-defined to be zero outside an appropriately large ball,
and the local Lipschitz condition can be extended to a global one. This type
of reasoning is much harder to justify in the SDE setting. Introducing noise
opens up the possibility that trajectories may take arbitrarily large excursions,
and establishing existence and uniqueness results is a delicate business, typically
hinging on the fact that increasingly large solution values are increasingly less
probable.

Similar comments apply when, as in the next section, we analyse numerical
methods for simulating SDEs—the textbook global Lipschitz conditions place
severe constraints on the class of problems that can be analysed.

3 Stability and Convergence of Numerical Sim-

ulations

Numerical methods are traditionally studied in asymptotic regimes. Convergence
looks at the error over a finite time interval [0, T ] as h → 0 and stability looks
at the approximate solution with a fixed h as t → ∞. In both cases, because a
random variable is an infinite dimensional object, the choice of norm is crucial.

The two most widely used convergence concepts are referred to as weak and
strong. Weak error measures how well a numerical method reproduces E[X(t)]
(or, more generally, E[φ(X(t))], where φ(·) is some polynomially bounded func-
tion). Under appropriate conditions, which usually include global Lipschitz
bounds on the drift and diffusion, the Euler–Maruyama method can be shown to
have weak order one, so that

sup
0≤nh≤T

(E[X(nh)] − E[Xn]) = O(h). (8)

Strong error, on the other hand, measures the mean of the absolute difference
between the two random variables, and Euler–Maruyama achieves only an order
of one half in this sense:

E

[
sup

0≤nh≤T
|X(nh) − Xn|

]
= O(h

1

2 ). (9)
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More generally, for any m > 1 and sufficiently small h there is a constant C =
C(m) such that

E

[
sup

0≤nh≤T
|X(nh) − Xn|m

]
≤ Chm/2. (10)

Using the Borel-Cantelli Lemma it is possible to pass from strong error to
pathwise error. For example, in [32] it is shown that given any ǫ > 0, there exists
a path-dependent constant K = K(ǫ) such that, for all sufficiently small h,

sup
0≤nh≤T

|X(nh) − Xn| ≤ K(ǫ)h
1

2
−ǫ.

In the ODE setting, rates such as O(h) and O(h
1

2 ) might be dismissed as
impractical, but for SDE computations they are frequently tolerated, because

• as discussed in section 6, statistical error generally dominates over discreti-
sation error, and

• higher order methods for general SDEs, especially in the strong sense, carry
heavy overheads [33].

Hence, although special-purpose higher order methods can be developed for par-
ticular circumstances [3], Euler–Maruyama, or one of its implicit variants, is at
the heart of most practical SDE computations.

The linear SDE (4) has proved to be a good starting point for the study of
basic long term behaviour, not least because it gives a natural extension of the
classic test problem for numerical ODEs [21]. For the SDE itself, there are simple
characterisations for mean-square stability

lim
t→∞

EX(t)2 = 0 ⇔ a + 1

2
b2 < 0

and asymptotic stability

lim
t→∞

|X(t)| = 0, with probability one ⇔ a − 1

2
b2 < 0.

A typical one-step numerical method produces recurrences of the form

Xn+1 = Xn (p + qVn) , (11)

where the coefficients p and q depend on h and on the SDE parameters, a and b.
Mean-square stability of this discrete iteration is neatly characterised as

lim
n→∞

EX2
n = 0 ⇔ p2 + q2 < 1, (12)

but, perhaps surprisingly, the corresponding property of asymptotic stability has
a less tractable form; from the Strong Law of Large Numbers and the Law of the
Iterated Logarithm we find [23]

lim
n→∞

|Xn| = 0, with probability one ⇔ E[log |p + qVn|] < 0. (13)
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Figure 2: Stability regions for the iteration (11) for p, q > 0. The dashed line
along the unit circle is the boundary for mean-square stability (12). The solid
line is the boundary for asymptotic stability (13). The choice p = q = 1.1 used
for Figure 3 is marked with a cross.

In Figure 2 the white bounded area of the p, q plane is the region of asymp-
totic stability, that is, where the right-hand inequality in (13) holds. The unit
circle, marked with a dashed line, is the boundary for mean-square stability (12).
Both regions are symmetric about the p and q axes, so we only show p, q > 0. To
emphasize that the two stability concepts are different, we have marked with a
cross in Figure 2 the point p = q = 1.1. Here, the iteration is asymptotically sta-
ble but not mean-square stable—every path must tend to zero as time increases,
but for any large time there are enough ‘bad’ paths to make the variance huge.
Figure 3 shows how one path of |Xn| evolves in this case, with the vertical axis
on a logarithmic scale. The iterates decay, albeit far from monotonically.

Given a test problem, we would like our method to reproduce stability for the
biggest possible range of stepsizes. A stochastic extension of the trapezoidal rule

Xn+1 = Xn + 1

2
hf(Xn) + 1

2
hf(Xn+1) +

√
h g(Xn) Vn, (14)

is easily shown, via (12), to have perfect mean-square stability behaviour—given
any a and b, and any stepsize h, the method matches the stability/instability of
the SDE. For asymptotic stability, however, analysis via (13) is more awkward,
and we are not aware of any general-purpose method that can be guaranteed, for
all h > 0, to preserve asymptotic stability of the SDE.
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Figure 3: One instance of the sequence |Xn| for the iteration (11) with p = q =
1.1. This process is asymptotically stable, but not mean-square stable.

Although convergence theory under global Lipschitz assumptions and stability
theory for a linear test problem give a useful baseline, the study of nonlinear
SDEs raises new issues, and casts doubt on the usefulness of Euler–Maruyama.
Several authors [25, 26, 27, 38, 40, 47] have shown that Euler–Maruyama can
fundamentally break down for nonlinear and/or long-time computations.

For example, the scalar SDE

dX(t) = −X(t)3dt + dW (t),

with any deterministic initial condition X(0), has a well defined solution. How-
ever, [27, Theorem 1] shows that over any compact interval [0, T ] the strong error
in an Euler–Maruyama approximation to this SDE blows up as h → 0. Similarly,
[26] shows that on the example

dX(t) = (X(t) − X(t)3)dt + 2X(t)dW (t),

for which

lim sup
t→∞

1

t
log |X(t)| ≤ −1, with probability 1,

given any h > 0 there is a non-zero probability that a path generated by an
Euler–Maruyama simulation will blow up as t → ∞. Although these results deal
with different types of behaviour, in both cases their proof relies on the fact that
the Gaussian increments used by the numerical method may occasionally perturb
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the iterates into a region where the nonlinear drift has a repulsive effect, and it
is clear that any other explicit numerical method can suffer the same fate.

This brings us to a key point. Unlike in the deterministic ODE case, for
nonlinear SDEs we introduce implicitness not in the hope of improving efficiency
by allowing larger stepsizes, but in the hope of obtaining a method that satisfies
the fundamental requirements of accuracy and stability.

Although some general results are available for specific nonlinear structures,
for example, one-sided Lipschitz constants [25, 38], many SDE models do not fit
into standard categories. Challenges may arise not only through faster than linear
growth of the coefficients at infinity, but also through unbounded derivatives at
the origin—in particular, we will see in section 5 that square roots arise naturally
in models of chemical kinetics. For example, motivated by an empirically fitted
interest rate model of Ait-Sahalia [1], strong convergence of specially constructed
implicit methods is considered in [45] for the problem class

dX(t) =
(
α−1X(t)−1 − α0 + α1X(t) − α2X(t)r

)
dt + σX(t)ρdW (t),

where the αi are positive constants and r, ρ > 1.

4 SDEs as Chemical Langevin Equations: Part

1, Motivation

To motivate the use of stochastic models in systems biology, we begin with a
simple deterministic example. In [11] a stylised model is given for the levels of
two types of protein that are mutually repressive—an increase in the level of
protein P1 inhibits the production of protein P2 and vice versa. Letting z1(t) and
z2(t) denote the levels of P1 and P2 at time t, respectively, a mass action ODE
system for this two-gene network takes the form

dz1

dt
=

1

1 + κz1

(
γ

1 + ωz2
2

− δz1

)
, (15)

where the equation for z2 is found by swapping z1 and z2 in (15). Using parameter
values κ = 2×10−4, δ = 7.5×10−4, ω = 2×10−6 and γ = 1.14 it can be shown that
this ODE system has two linearly stable steady states; one has z1(t) ≡ za ≈ 481
and the other z1(t) ≡ zb ≈ 1039. This type of bistability, predicting that cells may
evolve into more than one possible state, is of great biological importance [22].
However, for deterministic models such as (15) it may be argued as unrealistic
that (a) the cell’s fate is completely specified by the initial condition, and (b)
a cell cannot switch dynamically between states. A major benefit of stochastic
models is that they can allow for the scenario where the system spends time in
more than one “attractive” region of state space.
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Figure 4: Number of P1 molecules over time, from a stochastic model of a genetic
toggle switch. The underlying deterministic approximation has stable steady
levels at 481 and 1039.

In Figure 4, which is based on [11, Figure 5], we show the P1 protein level
arising from a simulation that uses a stochastic analogue of (15). Full details are
given later in this section, at this stage we simply mention that the simulation
produces an integer number of P1 proteins along a discrete set of times t. Every
1000th such value is plotted as a dot in the figure, starting with 600 molecules
and running up to time t = 107. We see that the P1 level spends time close to
each of the two stable steady state values that exist for the ODE version of the
model. It is, of course, possible to study the statistics of the stochastic model
further, for example, the typical time for a ‘transition’ between the two levels
may be of interest [11].

Bistability, and more general multistability behaviour for stochastic models is,
of course, also of great interest for many other physical and mechanical systems.

The stochastic simulation in Figure 4 is based on what is often called the
Chemical Master Equation (CME) regime, whereas the ODE model (15) corre-
sponds to the mass action, or Reaction Rate Equation (RRE) setting. Between
these two extremes there is a diffusion limit or Chemical Langevin Equation
(CLE) regime that takes the form of an SDE. The CLE regime has the bene-
fit of retaining the stochastic nature of the underlying CME framework, while
making simulation and analysis more tractable.

Before discussing the general setting, we will illustrate the main ideas on the
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extremely simple case of unimolecular decay

S
cS→ ∅. (16)

Here, we have a single species, S, in our system, and the only event that can
take place at any time is that one molecule of S may decay. The rate constant
c > 0 quantifies the strength of the decay process. We suppose that initially,
at time t = 0, the number of molecules of S is known to be N . We also note
that this system would be called a pure death process in the context of stochastic
population modelling, [42].

In the CME regime, the state of the system at time t is described by a non-
negative integer Z(t), representing the number of molecules of S present. Hence,
Z(t) may take any of the values N, N − 1, N − 2, . . . , 1, 0. Given that there
are Z(t) molecules present at time t, first principle modeling arguments show
that the time we must wait before the next reaction takes place (that is, the
next time we lose a molecule of S) has an exponential distribution with expected
value 1/(cZ(t)). This is intuitively reasonable—as the number of molecules, Z(t),
decreases, we must typically wait longer for the next one to disappear. Similarly,
for a system with a smaller rate constant, c, we would typically wait longer
between events. Furthermore, the exponential distribution makes the waiting
time between events memoryless; the chance of the next event occurring within
the next second does depend upon how long ago the last event took place. Because
exponentially distributed samples can be easily constructed by log-transforming
uniformly distributed samples, it is a very simple matter to compute a path for
Z(t). The following pseudocode summarizes an appropriate algorithm, assuming
that the initial state, Z(0), is given.

A. Draw a uniform (0,1) pseudo-random sample, ξ.

B. Set τ = ln(1/ξ)/(cZ(t)) to be the waiting time before the next reaction.

C. Update the system to Z(t + τ) = Z(t) − 1 and update the current time t to
t + τ .

D. Return to step A if Z(t) > 0 and you wish to continue.

In the CLE setting for the reaction (16), we use an SDE to represent the level
of species S present at time t. So, at each time t, we have a continuous-valued
random variable, X(t). The CLE takes the form of the Itô SDE

dX(t) = −cX(t) dt −
√

cX(t) dW (t), Y (0) = N. (17)

The RRE, or mass action, formulation for (16) is simply the scalar ODE
dz(t)/dt = −cz(t), where z(t) is a deterministic real-valued quantity representing
the amount of S present at time t.
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Figure 5: Simulations of the simple reaction (16), starting with ten molecules.

In Figure 5 we illustrate the three regimes in the case of 10 initial molecules.
(The CLE was simulated numerically using Euler–Maruyama.) It is immediately
apparent that the CLE path does not respect the inherent monotonicity of this
simple reaction. Unlike the RRE solution, however, any CLE path will, eventu-
ally, attain the value zero. Figures 6 and 7 repeat the exercise with 50 and 200
initial molecules, respectively. We see that the fluctuations are less significant
when the molecule count is high—this idea will be formalized shortly when we
consider the thermodynamic limit.

In the CME regime for (16), at every time t the state Z(t) is a random variable
with a discrete set of possible values 0, 1, 2, . . . , N . We may then let pi(t) denote
the probability Z(t) = i. It follows that {pi(t)}N

i=0 satisfy an ODE, or master
equation, of the form

d

dt
pi(t) = c(i + 1)pi+1(t) − cipi(t), for i = N − 1, N − 2, . . . , 0, (18)

where PN+1(t) is taken to be zero. This has the intuitive interpretation that the
rate of change of pi(t) has

• a positive contribution c(i + 1)pi+1(t), which corresponds to the fact that
we enter state i via one decay from state i + 1, and

• a negative contribution −cipi(t) due to the fact that we leave state i when
a decay takes place.
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Figure 6: Simulations of the simple reaction (16), starting with fifty molecules.
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Figure 7: Simulations of the simple reaction (16), starting with two hundred
molecules.
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The linear ODE system (18) has solution

pi(t) =
N !

i!(N − i)!
e−cit

(
1 − e−ct

)N−i
, for i = 0, 1, 2, . . . , N, (19)

and it follows that the mean, E[Z(t)] and variance var[Z(t)] have the form

E [X(t)] = Ne−ct and var [X(t)] = Ne−ct
(
1 − e−ct

)
. (20)

For the CLE (17), because the drift coefficient −cX(t) is linear, it follows
immediately that E [Y (t)] satisfies the ODE that arises when the noise is switched
off, giving

E [X(t)] = Ne−ct. (21)

To find the second moment, we may apply Itô’s lemma, see, for example, [37], to
get

d

dt
E

[
X(t)2

]
= −2 c E

[
X(t)2

]
+ c E [X(t)] ,

from which it follows that

var [X(t)] = Ne−ct
(
1 − e−ct

)
. (22)

So the CLE reproduces the mean and variance of the CME.
The RRE matches the mean of the CME; that is, z(t) = E[Z(t)] = Ne−ct.

Being deterministic, z(t) of course has zero variance.
Studying the first and second moments in this way outlines one sense in which

the CLE may be regarded as an intermediate model that approximates the CME
more accurately than the RRE. In the next section we look at this issue in more
detail.

5 SDEs as Chemical Langevin Equations: Part

2, Theory and Challenges

Suppose we have a general system with R chemical species, S1, S2, . . . , SR, taking
part in M different chemical reactions. In the CME formulation, we then have a
state vector Z(t) ∈ R

R whose ith component denotes the number of molecules of
Si present at time t. In this setting, unlike in the molecular dynamics regime [36],
we are not concerned with the location or velocity of each molecule, we simply
wish to record the total number for each species. Having settled on this level
of detail, we must accept that the most accurate description of how the system
evolves must be stochastic. After making some reasonable assumptions (such
as a fixed volume for the system and a constant temperature) Gillepsie [18, 19]
used first principle modelling arguments to derive the CME for Z(t). For each
1 ≤ j ≤ M the CME involves
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• a stoichiometric vector, νj ∈ R
R, and

• a propensity function, aj (Z(t)),

such that the jth reaction takes place over the infinitesimal interval [t, t + dt)
with probability aj (Z(t)) dt and causes the change Z(t) 7→ Z(t) + νj to the
state vector. Gillespie showed how to derive appropriate propensity functions for
standard chemical reactions.

Letting P (z, t) denote the probability that Z(t) = z, the CME is given by
the ODE system

dP (z, t)

dt
=

M∑

j=1

(aj(z − νj)P (z − νj , t) − aj(z)P (z, t)) . (23)

We note that the same form of ODE has been derived in many other modelling
contexts, notably population dynamics [42], and is often referred to as the forward
Kolmogorov equation.

For the simple reaction (16) we have R = 1 species, ν1 = −1 and a1 (x) = cx,
and we see that (23) reduces to (18).

Generally, since z ranges over the set of all possible systems states, the CME
represents a massive (albeit linear, constant coefficient) ODE system that is too
large to compute with and visualize; although progress is being made for some
nontrivial examples [30].

As an alternative to computing P (z, t) directly, Gillespie showed that it is pos-
sible to compute sample paths that respect these probabilities. In this approach,
on each step we draw two random numbers. One is used to choose a waiting
time until the next reaction takes place—this is exponentially distributed with
mean given by the inverse of the sum of the values of propensity functions, so
the higher the propensities the shorter the typical waiting times. The other is
used to choose which of the M reactions to fire. The chance that reaction j
fires is proportional to its propensity. Overall, the resulting algorithm can be
summarized very simply in the following pseudocode, given an initial state Z(0).

1. Evaluate {ak(Z(t))}M
k=1 and asum(Z(t)) :=

∑M
k=1 ak(Z(t)).

2. Draw two independent uniform (0,1) random numbers, ξ1 and ξ2.

3. Set j to be the smallest integer satisfying
∑j

k=1 ak(Z(t)) > ξ1asum(Z(t)).

4. Set τ = ln(1/ξ2)/asum(Z(t)).

5. Set Z(t + τ) = Z(t) + νj and update t to t + τ .

6. Return to step 1 or terminate.
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In Figure 4 we used this algorithm with R = 2 species, M = 4 reactions,
stoichiometric vectors of the form

ν1 =

[
1
0

]
, ν2 =

[
−1
0

]
, ν3 =

[
0
1

]
, ν4 =

[
0
−1

]

and propensity functions

a1(z) =
γ

(1 + κz1)(1 + ωz2
2)

,

a2(z) =
δz1

1 + κz1

,

a3(z) =
γ

(1 + κz2)(1 + ωz2
1)

,

a4(z) =
δz2

1 + κz2
.

We should also metion that although, as any WWW search engine will re-
veal, Gillespie’s algorithm is now extremely well cited in the chemistry and bio-
chemistry fields, other application areas use similar ideas under different names,
including the residence-time algorithm [8], kinetic Monte Carlo [52] and, more
generally, discrete event simulation and Petri nets [51].

Because Gillespie’s algorithm faithfully reproduces the statistics of the CME,
it is forced to take account of every reaction along a path—the propensity func-
tions must be reevaluated at each new state. If we make an approximation by
freezing the propensity functions over some time period, τ , then we can argue
that the number of type j reactions taking place arises from a simple counting
process and will follow a Poisson distribution with parameter aj(Z(t))τ . (A Pois-
son random variable with parameter λ > 0 takes the value i with probability
e−λλi/(i!) for i = 0, 1, 2, . . ..) If we further argue that aj(Z(t))τ is large, then
this Poisson update to the state vector can be approximated by a Gaussian with
the same mean and variance. This leads us to the recurrence

Y (t + τ) = Y (t) + τ
M∑

j=1

νjaj(Y (t)) +
√

τ
M∑

j=1

νj

√
aj(Y (t))ξj, (24)

where the ξj are independent standard Gaussians and hence each Y (t) is a real-
valued random variable. We see from (2) that this has the form of an Euler–
Maruyama iteration, and hence, for small τ , we could approximate this system
with the SDE

dX(t) =

M∑

j=1

νjaj(X(t))dt +

M∑

j=1

νj

√
aj(X(t)) dWj(t). (25)

This is the CLE model for the chemical system. We saw the simple case (17) for
the pure decay reaction (16).
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We note also that the iterations of the type (24) are of independent practical
interest; see for, example, [2, 20].

To discuss the sense in which the CLE approximates the CME, it is usual
to rescale the process Z(t) to Ẑ(t) = Z(t)/V , where V ≫ 1. Typically V
is regarded as the product of the Avagadro constant and the volume in litres,
so that Ẑ(t) measures moles per litre. If we similarly scale the CLE solution

to X̂(t) = X(t)/V , then, under the assumption that the propensity functions
satisfy aj(V x) = O(V ) as V → ∞, which holds for standard chemical kinetics,
Kurtz [34] has shown that over a finite time interval [0, T ], the largest deviation

of Ẑ(t) − X̂(t) is typically O(log(V )/V ); see, also, for example, [2, 5] for more
details.

As V → ∞, which is the so called thermodynamic limit, the deterministic
RRE

dx(t)

dt
=

M∑

j=1

νjaj(x(t)), (26)

also approximates the discrete stochastic model in the sense that x̂(t) = x(t)/V

matches Ẑ(t) pathwise to O(1/
√

V ).
We have outlined how the CLE can be derived from the CME under certain

modelling assumptions, and mentioned accuracy over compact time intervals in
the thermodynamic V → ∞ limit. It is perhaps not surprising, however, that
issues arise when the modelling assumptions are not valid and when long time
behaviour is studied. For an illustration, we may use the simple reversible reaction
example,

S1

k1

⇄
k2

S2, (27)

which has stoichiometric vectors

ν1 =

[
1
−1

]
, ν2 =

[
−1
1

]

and propensity functions a1(z) = k1z2, a2(z) = k2z1. Since the only possible
events are that a molecule of S1 converts to a molecule of S2 , or vice versa, it
is clear that in the CME framework the total number of molecules is preserved.
Further, if we start with a deterministic number Z1(t) + Z2(t) = K of molecules,
then both Z1(t) and Z2(t) must take integer values in the range {0, 1, 2, . . . , K −
2, K − 1, K}.

The CLE for this model has the form

dX1(t) = (−k1X1(t) + k2X2(t))dt −
√

k1X1(t)dW1(t) +
√

k2X2(t)dW2(t),(28)

dX2(t) = (k1X1(t) − k2X2(t))dt +
√

k1X1(t)dW1(t) −
√

k2X2(t)dW2(t).(29)

Looking at equation (28), we see that for X1(t) close to zero, the right-hand
side has a deterministic contribution k2X2(t)dt pushing X1(t) back into the pos-
itive orthant, but it also has a stochastic contribution

√
k2X2(t)dW2(t) which is
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equally likely to have a positive or negative effect. Similar comments apply to
the case X2(t) ≈ 0, and, overall, solutions to (28)–(29) cannot be guaranteed to
remain positive. If the molecule count for species X1 or X2 becomes small—in
which case the assumptions used to derive the CLE are invalid—the SDE model
breaks down because the diffusion coefficients involve square roots of negative
arguments. For this reason, analysis of general CLE systems requires care, and
modifications to the basic CLE may be required simply to produce a well-defined
mathematical object [46].

Wilkie and Wong [50] noted that the CLE can produce negative concentra-
tions, and suggested a fix that involves deleting the offending diffusion coefficients.
For the simple example (27) their modified CLE takes the form

dX1(t) = (−k1X1(t) + k2X2(t))dt −
√

k1X1(t)dW1(t), (30)

dX2(t) = (k1X1(t) − k2X2(t))dt −
√

k2X2(t)dW2(t). (31)

However, we would argue that all four diffusion terms in (28)–(29) have a role to
play in capturing the fluctuations of the underlying Poisson processes about their
mean, and we would not recommend making a global change to fix a difficulty
that is localized to the boundary.

Because the propensity functions in this example are linear, we can study the
issue further by obtaining closed form ODEs for the evolution of the moments.
In the CME framework, the scaled, discrete-valued, process in Ẑ(t) has moments
that evolve according to the linear ODE

d

dt





EẐ1

EẐ2

E(Ẑ1)
2

E(Ẑ2)
2

EẐ1Ẑ2




=





−k1 k2 0 0 0
k1 −k2 0 0 0

k1/V k2/V −2k1 0 2k2

k1/V k2/V 0 −2k2 2k1

−k1/V −k2/V k1 k2 −(k1 + k2)









EẐ1

EẐ2

E(Ẑ1)
2

E(Ẑ2)
2

EẐ1Ẑ2




,

(32)
see, for example, [12] for details of how to derive these relations. For the modified
Langevin process (30)–(31) we may apply Itô’s lemma [13] to the functions X2

1 ,

X2
2 , X1X2 and then take expectations, to obtain, in scaled form, X̂(t) = X(t)/V ,

d

dt





EX̂1

EX̂2

E(X̂1)
2

E(X̂2)
2

EX̂1X̂2





=





−k1 k2 0 0 0
k1 −k2 0 0 0

k1/V 0 −2k1 0 2k2

0 k2/V 0 −2k2 2k1

0 0 k1 k2 −(k1 + k2)









EX̂1

EX̂2

E(X̂1)
2

E(X̂2)
2

EX̂1X̂2





.

(33)
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In (33) we have underlined the zero coefficients in the ODE Jacobian that replace
the nonzeros in the master equation version (32). Making such an O(1/V ) change
to the entries will generally cause an O(1/V ) change in the ODE solution, over
any finite time interval.

In Figure 8 we show computations for the case k1 = k2 = 1, with deterministic
initial data XV

1 (0) = 4, XV
2 (0) = 1. The picture on the left uses V = 1 and

the picture on the right uses V = 10. We have plotted the evolution of the
second moment of the first species. The solid curve shows E(Ẑ1)

2, for the master

equation formulation, and the thick dashed line shows E(X̂1)
2 for the modified

Langevin. The thinner dashed curve, which is the same in both pictures, shows
the corresponding deterministic curve for the mass action ODE. We see that the
modified Langevin (30)–(31) is no more accurate than the simple mass action
ODE in terms of reproducing the second moment from the master equation. We
repeated the computations for a range of V values and recorded the error in the
second moment at time t = 4. For the modified Langevin we obtained errors

that scaled like E(Ẑ1)
2 − E(X̂1)

2 = −4.06/V and for the mass action ODE this
became 1.25/V .

Using Itô’s lemma on the original Langevin equation (28)–(29) we recover
the exact moment equation (32)1. This makes it clear that the discrepancies
underlined in (33) are a direct consequence of setting particular noise terms to
zero—a global perturbation to the Langevin equation has reduced its accuracy
down to that of the mass action ODE.

In general, dealing systematically with the multiscale interface between discrete-
valued stochastic, real-valued stochastic and real-valued deterministic models in
order to make large-scale modelling and computation a feasible proposition re-
mains a very active and challenging field that naturally leads into mixed, or
hybrid, models that couple or extend the concept of an SDE [2, 5, 7, 10, 29, 35].

6 Monte Carlo Simulations

Most of the computations that are performed on stochastic models can be cast
in terms of a Monte Carlo simulation to approximate an expected value [43]. In
the case where SDEs are simulated there is an inherent discretization error—each
sample that we compute has a built-in bias, because we do not solve the SDE
exactly.

For simplicity of exposition, we will suppose in this section that the SDE is
scalar—the conclusions hold for general systems. Suppose we wish to find the
expected value of some function of the final time solution of this scalar SDE; say
E[F (X(T ))], where F : R → R is assumed to be globally Lipschitz and X(T )

1This exactness is a consequence of the linearity in the propensity functions; generally the
error in the moments would be O(1/V 2).

19



0 1 2 3 4
6

7

8

9

10

11

12

13

14

15

16

t

<
X

12 >

V = 1

 

 
Master Equation
Modified Langevin
Mass Action ODE

0 1 2 3 4
6

7

8

9

10

11

12

13

14

15

16

t

<
X

12 >

V = 10

 

 
Master Equation
Modified Langevin
Mass Action ODE

Figure 8: Second moment of X1 in the reversible isometry (27) for chemical
master equation (solid), modified Langevin (thick dashed) and mass action ODE
(thin dashed). Left: V = 1. Right: V = 10.
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is the final-time solution. For example, in the case where we wish to value a
European call option in mathematical finance [24] the SDE models the dynamics
of an asset, under a risk-neutral measure, and we have a piecewise linear ‘hockey-
stick’ payoff function F (x) = max(x − E, 0), where E is the exercise price.

Given a stepsize h such that Kh = T , we could apply the Euler–Maruyama
method (2) N times to get approximate samples {X [i]

K }N
i=1 from the distribution

of X(T ). Here, X
[i]
K denotes the final-time Euler–Maruyama approximation from

the ith path. Our computed approximation to E[X(T )] would then be the sample
mean

µ =
1

N

N∑

i=1

X
[i]
K .

The overall error splits naturally into two terms

E[X(T )] − µ = E[X(T ) − XK + XK ] − µ

= E[X(T ) − XK ] + E[XK ] − µ.

The term E[X(T ) − XK ] represents the bias from the discretization error, and
the weak error result (8) for Euler–Maruyama shows that this is O(h). The term
E[XK ] − µ represents the inherent statistical error associated with Monte Carlo,
and, from the Central Limit Theorem, the width of a confidence interval (to
be concrete, we will assume that a 95% confidence interval is required) scales
like O(1/

√
N). Hence, allowing for both sources of error, we have an overall

confidence interval of width O(h) + O(1/
√

N). Suppose that we wish to obtain
a prescribed target accuracy of ε. Then, to avoid unnecessary computation, it
makes sense to balance the two terms, so that h scales like ε and N scales like
ε−2. If we measure computational cost in terms of either

• the number of pseudo-random numbers generated, or

• the number of drift and diffusion coefficient evaluations required,

then the cost is proportional to the product of the number of steps per path,
1/h, and the number of paths, N . Hence, the cost to obtain a confidence interval
width bounded by ε scales like N/h = ε−3.

This conclusion, that for Monte Carlo/SDE simulations the cost varies in-
versely with the third power of the required accuracy, appears in many standard
references.

An obvious way to improve the complexity would be to use a numerical
method with a higher weak order. For example, under extra conditions on the
SDE coefficients, Talay and Tubaro [48] showed that an extrapolated version of
Euler–Maruyama could be use to increase the weak error rate to O(h2). This
would improve the computational complexity to O(ε−2.5).
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However, a radically different approach that gives a complexity of O (ε−2(log ε)2)
was recently put forward by Giles [15], and it is this extremely promising multi-
level Monte Carlo (MLMC) technique that we describe here. We can motivate
the approach heuristically by noting that is not necessary to compute all paths
with the same stepsize h. Because a smaller h is more expensive, it might be
beneficial to compute many cheap, low-resolution samples, and then use a few
high-resolution paths to fill in the high frequency detail. More precisely, Giles pro-
posed a hierarchy of discretisation scales in a manner reminiscent of a multigrid
computation for a partial differential equation. Before outlining and justifying
the main ideas, we wish to emphasize that

• the technique does not rely on a special SDE discretisation scheme or a spe-
cial structure for the SDE—the standard Euler–Maruyama method can be
used and the analysis simply exploits its basic weak and strong convergence
properties,

• although our aim is to compute an expected value, the technique relies on
both the weak and strong convergence behaviour of the numerical method.

In its simplest form, MLMC uses a range of stepsizes of the form hl = 2−lT
for levels l = 0, 1, 2, . . . , L. The number of levels L is chosen so that

L =
log(ε−1)

log(2)
. (34)

This ensures that at the finest level, L, we have stepsize hL = O(ε). So the bias
at this level has the appropriate size.

Now we let the random variable Pl denote the result of applying Euler–
Maruyama with stepsize hl in order to approximate the payoff F (X(T )). Rather
than going for E[PL] directly, we will make use of the trivial identity

E[PL] = E[P0] +
L∑

l=1

E[Pl − Pl−1],

and estimate separately the terms on the right-hand side. To do this, at level 0
we will use N0 paths in order to form the sample average

Y0 =
1

N0

N0∑

i=1

P
[i]
0 , (35)

and generally for level l ≥ 1 we will use Nl paths in order to compute

Yl =
1

Nl

Nl∑

i=1

(
P

[i]
l − P

[i]
l−1

)
, (36)
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Figure 9: An illustration of how the estimator (36) is constructed by applying
Euler–Maruyama over the same Brownian path with two different stepsizes, hl

and hl−1 = 2hl.

so that our overall estimator is Y := Y0+
∑L

l=1 Yl. We emphasize here that P
[i]
l and

P
[i]
l−1 are computed from the same Brownian path. In other words, suppose that we

are currently at time tn, where n is even. If the Euler–Maruyama computation
with stepsize hl uses random increments

√
hl ξ

[i]
n and

√
hl ξ

[i]
n+1 during the two

steps that update to time tn + 2hl, then the accompanying Euler–Maruyama
computation with stepsize hl−1 = 2hl uses

√
hlξ

[i]
n +

√
hlξ

[i]
n+1. Figure 9 illustrates

this scenario. For each path i, we use independent random increments, and these
increments are also independent across different levels—so the pseudo-random
numbers are not re-used.

It remains to work out how many paths are required at each level in order to
reduce the variance in the overall estimate to var[Y ] = O(ε2), so that the final
confidence interval has width of O(ε), and then to check the resulting computa-
tional complexity.

Using the basic inequality var[X] = E[X2] − (E[X])2 ≤ E[X2] and the global
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Lipschitz property of F , we have

var[Pl − F (X(T ))] ≤ E[(Pl − F (X(T )))2] = O(E
[
(XK − X(T ))2

]
).

It then follows from the strong convergence property (10) of Euler–Maruyama,
with m = 2, that

var[Pl − F (X(T ))] = O(hl).

Using this inequality along with the appropriate triangle inequality (‖X +Y ‖2 ≤
‖X‖2 + ‖Y ‖2 for ‖X‖2 :=

√
E[X2]), we find that

var[Pl − Pl−1] ≤
(√

var[Pl − F (X(T ))] +
√

var[Pl−1 − F (X(T ))]
)2

= O(hl).

It follows that Yl in (36) has variance of O(hl/Nl). Now, since the computations
at each level are independent, the overall variance of the estimator Y expands as

var[Y ] = var[Y0] +

L∑

l=1

var[Yl] = var[Y0] +

L∑

l=1

O(hl/Nl).

The choice
Nl = O

(
ε−2Lhl

)

is then seen to produce the required overall variance of var[Y ] = O(ε2).
Now the computational complexity of this algorithm is given by the sum over

all levels of the product of “cost per step” and “number of steps”, which becomes

L∑

l=0

Nlh
−1
L =

L∑

l=0

ε−2Lhlh
−1
l = L2ε−2.

From (34), this leads to a complexity of O
(
ε−2 (log ε)2

)
.

In addition to proposing and justifying MLMC, Giles [15] also implemented
a practical version that was seen to deliver the improved complexity on realistic
problems in option valuation. Subsequent work on this multilevel approach has
looked at

• numerical methods with higher weak and strong order [14],

• various classes of “payoff” functions F that are not globally Lipschitz and
may even depend upon X(t) along the whole path 0 ≤ t ≤ T , for example
the case of barrier options [4, 16],

• MLMC combined with Quasi-Monte Carlo methods that improve the sta-
tistical component of the complexity [17].

To put MLMC in context, we emphasize that for standard Monte Carlo sim-
ulations
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• samples are assumed to be exact, and

• variance reduction techniques to speed up the computations typically ex-
ploit problem-dependent structures.

By contrast, MLMC applies to the scenario where the samples have a built-in bias
arising from an SDE discretisation and requires no extra knowledge of the problem
structure. In the cases where it has been shown to work, it makes the cost of the
SDE simulation negligible—the asymptotic complexity is effectively reduced to
the level that would remain if we were able to evaluate the SDE solution exactly.
There are, of course, many promising avenues for this remarkable idea, not only
for SDE simulations, but also within the broader context of multiscale modelling
and simulation.

7 Model Calibration

Any mathematical model can only be an approximate description of a physical
system. Moreover, it is often the case that some or all of the parameters and
initial conditions are unknown, and hence must be inferred from experimental
measurements. In the SDE case, where the model itself is stochastic, it is natural
to quantify this uncertainty by using statistical tools.

We give here a very simple illustration of a Bayesian approach to parameter
estimation. We refer to [31, 44] for general background information on Bayesian
inference, while noting that it is currently something of a novelty in the applied
mathematics literature. We will consider a financial setting where daily observa-
tions of an asset are available. Suppose the asset, S(t), is modeled by the simple
linear SDE (4)—this assumption is at the heart of the classic Black–Scholes the-
ory for financial option valuation [24]. Setting ∆t = 1 day, the asset values
{S(i∆t)} may be converted into log-return data

Ri = log

(
S(i∆t)

S((i − 1)∆t)

)
. (37)

Under the SDE model (4) it follows that the {Ri} are independent samples from
a Gaussian distribution with mean (a − 1

2
b2)∆t and variance b2∆t. A key step

in Black-Scholes option valuation is the estimation of the volatility parameter,
b, so we will aim to infer the value of b and, for simplicity, assume that a is
known. More precisely, we seek a posterior distribution—a density function that
quantifies our degree of belief about possible values of b.

Our SDE model allows us to calculate the probability of any data set {Ri}
arising, given a value for b. Bayes’ Theorem makes it possible to turn this around
and calculate the probability of any particular value of b arising, given a set of
observations {Ri}. The key relationship is

P (b|{Ri}) ∝ P ({Ri}|b)P (b). (38)
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Here,

• P (b|{Ri}) is the probability of, or degree of belief in, the parameter b, given
the data {Ri}. Our aim is to quantify this posterior probability over possible
values of b, and the right-hand side of (38) makes this feasible.

• P ({Ri}|b) is the probability of the data {Ri} arising, given the value of the
parameter b. This likelihood is made available to us by the model. In our
case it has the form

∏
i≥1 p (Ri ; (a − b2/2)∆t, b2∆t), where p(x ; λ, µ2) =

exp (−(x − λ)2/(2µ2)) /
√

2πµ2 is the density for a Gaussian with mean λ
and variance µ2.

• P (b) is the probability or degree of belief that we assign to b before we see
the data. Specifying this prior probability is an unavoidable requirement in
a Bayesian analysis.

In Figure 10 we illustrate this idea. Rather than take real financial data,
we generated synthetic data using the SDE model with S(0) = 1, a = 0.06 and
b = 0.4. In this way, we may judge the quality of our inference. The upper picture
shows data for one year, that is, 240 working days. We used a prior distribution
that is uniform over (0.2, 0.6)—so, before seeing the data we took the view that
b must be between 0.2 with 0.6 with all values being equally probable. In other
words, P (b) in (38) is constant for 0.2 < b < 0.6 and zero elsewhere. In the
lower picture, we show the posterior distribution that arises when we we use the
first three months (dotted), six months (dashed) and one year (solid) of data. To
make the pictures easier to interpret we have normalized the densities to have
maximum value of one, rather than unit area. For this synthetic experiment we
know that the “correct” value is b = 0.4. We see from the figure that as more
data is used, the posterior distribution becomes more sharply peaked, and begins
to focus on this value.

In this very simple setting, the Bayesian picture is very closely related to the
more traditional computational mathematics approach of forming a least-squares
objective function (analogous to the log-likelihood), adding a penalty function
(analogous to the log of the prior), and optimizing to find a single best parameter
value (analogous to computing a point that maximizes the posterior). However,
working in terms of the complete posterior density, rather than just presenting an
optimal parameter and possibly computing local sensitivity around that value,
has benefits when there is more than one region of likely values. Further, by
sampling parameter values from the posterior, we can display a set of ‘likely’
trajectories from the model.

A further advantage of the Bayesian approach is that higher levels of infer-
ence can be performed. If there are two or more plausible models, then there is a
systematic framework for simultaneously calibrating and comparing them, even
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Figure 10: Upper: One year of asset data from an SDE model. Lower: posterior
distribution of the volatility based on three months, six months and one year of
data, using a uniform prior distribution.

when the models have different numbers of parameters. Model selection compu-
tations of this nature have been performed on realistic ODE models in systems
biology [49] and much less realistic ODE models in science fiction [6], and, in
principle could be used in the SDE setting.

Many challenges must be overcome if Bayesian inference and model selection
are to become mainstream activities in the SDE context. Perhaps the biggest
hurdle is high dimensionality. If N parameters are to be inferred then the pos-
terior distribution is a scalar valued function of N variables. Searching through
R

N in order to find regions where the posterior takes on significant values is, in
general, a huge task—in many inference contexts this task is more challenging
than deterministic global optimization over R

N in the sense that all regions of
significant behaviour are required since we must (a) normalize the posterior to
have unit area, and (b) integrate the posterior across several of the dimensions.
Hand in hand with the computational complexity there is also a visualization
issue. How do we display a 25-dimensional random variable to our colleagues?
One- or two-dimensional slices through the posterior, or marginals, where all but
one or two dimensions have been integrated out, can be useful, but they nec-
essarily compress information—for example the globally most likely parameter
set according to the full posterior may be very different from the locations of
the peaks in these lower dimensional analogues. More fundamentally, unlike the
simple example in Figure 10, in general the SDE model will not have a known
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solution, and hence discretisation methods will be required in order to construct
an approximate likelihood. Added complexity arises if the data itself is assumed
to be in error, perhaps in a manner that is correlated across time.

There are many other approaches to SDE model calibration, for example the
recent text [28] gives examples, many of them ad hoc and based on the particular
form of the problem, with an emphasis on mathematical finance. This seems to be
an area where a general set of principles, bringing together ideas from statistics,
applied mathematics and computer science, is yet to emerge. To emphasize that
there are possible pitfalls for the unwary, let us return to the asset data example,
and suppose that we wish to infer the mean of our log returns. The intuitively
appealing sample average

1

N

N∑

i=1

Ri

has the unfortunate property of telescoping down to

1

N

N∑

i=1

log S(i∆t) − log S((i − 1)∆t) =
1

N

N∑

i=1

log

(
S(N∆t)

S(0)

)
.

Hence, this quantity involves only the first and last observation, ignoring the vast
majority of the data!

8 Outlook

Overall, this overview of the use of SDEs in applied mathematics, which is natu-
rally biased towards the author’s knowledge base and interests, has emphasized
four main themes where future activity is likely to have a high impact.

Theoretical issues regarding existence and uniqueness of solutions for nonlin-
ear problems, and corresponding results on convergence, stability and the
preservation of qualitative features for numerical simulation.

The role of SDEs in multiscale modelling scenarios, especially in systems biol-
ogy, which will require new theory and tools for hybrid discrete/real-valued
models.

More effective Monte Carlo computations in the SDE setting through the use of
multilevel methods.

General purpose inference and model selection techniques for quantifying un-
certainty.
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