Picture of athlete cycling

Open Access research with a real impact on health...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of Open Access research papers by Strathclyde researchers, including by researchers from the Physical Activity for Health Group based within the School of Psychological Sciences & Health. Research here seeks to better understand how and why physical activity improves health, gain a better understanding of the amount, intensity, and type of physical activity needed for health benefits, and evaluate the effect of interventions to promote physical activity.

Explore open research content by Physical Activity for Health...

Stochastic ordinary differential equations in applied and computational mathematics

Higham, Desmond (2011) Stochastic ordinary differential equations in applied and computational mathematics. IMA Journal of Applied Mathematics, 76 (3). pp. 449-474. ISSN 1464-3634

7techima.pdf - Preprint

Download (1MB) | Preview


Using concrete examples, we discuss the current and potential use of stochastic ordinary differential equations (SDEs) from the perspective of applied and computational mathematics. Assuming only a minimal background knowledge in probability and stochastic processes, we focus on aspects that distinguish SDEs from their deterministic counterparts. To illustrate a multiscale modelling framework, we explain how SDEs arise naturally as diffusion limits in the type of discrete-valued stochastic models used in chemical kinetics, population dynamics, and, most topically, systems biology. We outline some key issues in existence, uniqueness and stability that arise when SDEs are used as physical models, and point out possible pitfalls. We also discuss the use of numerical methods to simulate trajectories of an SDE and explain how both weak and strong convergence properties are relevant for highly-efficient multilevel Monte Carlo simulations. We flag up what we believe to be key topics for future research, focussing especially on nonlinear models, parameter estimation, model comparison and multiscale simulation.