Picture of smart phone in human hand

World leading smartphone and mobile technology research at Strathclyde...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of Open Access research papers by University of Strathclyde researchers, including by Strathclyde researchers from the Department of Computer & Information Sciences involved in researching exciting new applications for mobile and smartphone technology. But the transformative application of mobile technologies is also the focus of research within disciplines as diverse as Electronic & Electrical Engineering, Marketing, Human Resource Management and Biomedical Enginering, among others.

Explore Strathclyde's Open Access research on smartphone technology now...

A non invasive capacitive sensor strip for aerodynamics pressure measurement

Zagnoni, Michele and Golfarelli, A. and Proli, P. and Callegari, Sergio and Talamelli, A. and Sangiorgi, E. and Tartagni, M. (2005) A non invasive capacitive sensor strip for aerodynamics pressure measurement. Sensors and Actuators A: Physical, 123-124. pp. 240-248. ISSN 0924-4247

Full text not available in this repository. (Request a copy from the Strathclyde author)

Abstract

This paper presents a capacitive pressure sensor strip implemented in general purpose printed circuit board (PCB) technology based on a thin 3D structure composed of polyimide, woven glass reinforced epoxy resin (FR4) and metal layers. Multiphysics finite elements method (FEM) simulations have been performed over the proposed structure in order to develop a time-dependent electrical and mechanical model that can be easily used to tailor the characteristics to the application. The device targets a wide class of fluid dynamics applications, being non-invasive, comformable and smart for placement. The device simulations are herein validated by experimental wind tunnel measurements and compared with figures obtained on a wing profile by conventional electromechanical pressure transducers. This approach is one of the first example of fully embedding and electronically controlled fluid flow monitoring apparatus that could be used in replacement of state of the art mechanical systems.