Picture of a black hole

Strathclyde Open Access research that creates ripples...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of research papers by University of Strathclyde researchers, including by Strathclyde physicists involved in observing gravitational waves and black hole mergers as part of the Laser Interferometer Gravitational-Wave Observatory (LIGO) - but also other internationally significant research from the Department of Physics. Discover why Strathclyde's physics research is making ripples...

Strathprints also exposes world leading research from the Faculties of Science, Engineering, Humanities & Social Sciences, and from the Strathclyde Business School.

Discover more...

Almost sure exponential stability of backward Euler–Maruyama discretizations for hybrid stochastic differential equations

Mao, Xuerong and Shen, Yi and Gray, Alison (2011) Almost sure exponential stability of backward Euler–Maruyama discretizations for hybrid stochastic differential equations. Journal of Computational and Applied Mathematics, 235 (5). pp. 1213-1226. ISSN 0377-0427

[img]
Preview
PDF
p203_sdarticle100820.pdf - Accepted Author Manuscript

Download (527kB) | Preview

Abstract

This is a continuation of the first author's earlier paper [1] jointly with Pang and Deng, in which the authors established some sufficient conditions under which the Euler-Maruyama (EM) method can reproduce the almost sure exponential stability of the test hybrid SDEs. The key condition imposed in [1] is the global Lipschitz condition. However, we will show in this paper that without this global Lipschitz condition the EM method may not preserve the almost sure exponential stability. We will then show that the backward EM method can capture the almost sure exponential stability for a certain class of highly nonlinear hybrid SDEs.