Picture of person typing on laptop with programming code visible on the laptop screen

World class computing and information science research at Strathclyde...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of Open Access research papers by University of Strathclyde researchers, including by researchers from the Department of Computer & Information Sciences involved in mathematically structured programming, similarity and metric search, computer security, software systems, combinatronics and digital health.

The Department also includes the iSchool Research Group, which performs leading research into socio-technical phenomena and topics such as information retrieval and information seeking behaviour.

Explore

Mapping directed networks

Crofts, Jonathan and Estrada, Ernesto and Higham, Desmond and Taylor, Alan (2010) Mapping directed networks. Electronic Transactions on Numerical Analysis, 37. pp. 337-350. ISSN 1068-9613

[img] Other (File 835345)
ETNA.mht - Final Published Version
License: Unspecified

Download (1MB)

Abstract

We develop and test a new mapping that can be applied to directed unweighted networks. Although not a “matrix function” in the classical matrix theory sense, this mapping converts an unsymmetric matrix with entries of zero or one into a symmetric real-valued matrix of the same dimension that generally has both positive and negative entries. The mapping is designed to reveal approximate directed bipartite communities within a complex directed network; each such community is formed by two set of nodes S1 and S2 such that the connections involving these nodes are predominantly from a node in S1 and to a node in S2. The new mapping is motivated via the concept of alternating walks that successively respect and then violate the orientations of the links. Considering the combinatorics of these walks leads us to a matrix that can be neatly expressed via the singular value decomposition of the original adjacency matrix and hyperbolic functions. We argue that this new matrix mapping has advantages over other, exponential-based measures. Its performance is illustrated on synthetic data, and we then show that it is able to reveal meaningful directed bipartite substructure in a network from neuroscience.