Picture of smart phone in human hand

World leading smartphone and mobile technology research at Strathclyde...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of Open Access research papers by University of Strathclyde researchers, including by Strathclyde researchers from the Department of Computer & Information Sciences involved in researching exciting new applications for mobile and smartphone technology. But the transformative application of mobile technologies is also the focus of research within disciplines as diverse as Electronic & Electrical Engineering, Marketing, Human Resource Management and Biomedical Enginering, among others.

Explore Strathclyde's Open Access research on smartphone technology now...

Design of highly synchronizable and robust networks

Estrada, Ernesto and Gago, Silvia and Caporossi, Gilles (2010) Design of highly synchronizable and robust networks. Automatica, 46 (11). pp. 1835-1842. ISSN 0005-1098

Full text not available in this repository. (Request a copy from the Strathclyde author)

Abstract

In this paper, the design of highly synchronizable, sparse and robust dynamical networks is addressed. Better synchronizability means faster synchronization of the oscillators, sparsity means a low ratio of links per nodes and robustness refers to the resilience of a network to the random failures or intentional removal of some of the nodes/links. Golden spectral dynamical networks (graphs) are those for which the spectral spread (the difference between the largest and smallest eigenvalues of the adjacency matrix) is equal to the spectral gap (the difference between the two largest eigenvalues of the adjacency matrix) multiplied by the square of the golden ratio. These networks display the property of “small-worldness”, are very homogeneous and have large isoperimetric (expansion) constant, together with a very high synchronizability and robustness to failures of individual oscillators. In particular, the regular bipartite dynamical networks, reported here by the first time, have the best possible expansion and consequently are the most robust ones against node/link failures or intentional attacks.