Picture of a sphere with binary code

Making Strathclyde research discoverable to the world...

The Strathprints institutional repository is a digital archive of University of Strathclyde research outputs. It exposes Strathclyde's world leading Open Access research to many of the world's leading resource discovery tools, and from there onto the screens of researchers around the world.

Explore Strathclyde Open Access research content

A two-level enriched finite element method for a mixed problem

Allendes Flores, Alejandro Ignacio and Barrenechea, Gabriel and Hernández, Erwin and Valentin, Frédéric (2011) A two-level enriched finite element method for a mixed problem. Mathematics of Computation, 80. pp. 11-41. ISSN 0025-5718

[img]
Preview
PDF
a_two_level_enriched_finite_element.pdf - Draft Version

Download (879kB) | Preview

Abstract

The simplest pair of spaces is made inf-sup stable for the mixed form of the Darcy equation. The key ingredient is to enhance the finite element spaces inside a Petrov-Galerkin framework with functions satisfying element-wise local Darcy problems with right hand sides depending on the residuals over elements and edges. The enriched method is symmetric, locally mass conservative and keeps the degrees of freedom of the original interpolation spaces. First, we assume local enrichments exactly computed and we prove uniqueness and optimal error estimates in natural norms. Then, a low cost two-level finite element method is proposed to effectively obtain enhancing basis functions. The approach lays on a two-scale numerical analysis and shows that well-posedness and optimality is kept, despite the second level numerical approximation. Several numerical experiments validate the theoretical results and compares (favourably in some cases) our results with the classical Raviart-Thomas element