Picture of virus under microscope

Research under the microscope...

The Strathprints institutional repository is a digital archive of University of Strathclyde research outputs.

Strathprints serves world leading Open Access research by the University of Strathclyde, including research by the Strathclyde Institute of Pharmacy and Biomedical Sciences (SIPBS), where research centres such as the Industrial Biotechnology Innovation Centre (IBioIC), the Cancer Research UK Formulation Unit, SeaBioTech and the Centre for Biophotonics are based.

Explore SIPBS research

A two-level enriched finite element method for a mixed problem

Allendes Flores, Alejandro Ignacio and Barrenechea, Gabriel and Hernández, Erwin and Valentin, Frédéric (2011) A two-level enriched finite element method for a mixed problem. Mathematics of Computation, 80. pp. 11-41. ISSN 0025-5718

[img]
Preview
PDF
a_two_level_enriched_finite_element.pdf - Preprint

Download (879kB) | Preview

Abstract

The simplest pair of spaces is made inf-sup stable for the mixed form of the Darcy equation. The key ingredient is to enhance the finite element spaces inside a Petrov-Galerkin framework with functions satisfying element-wise local Darcy problems with right hand sides depending on the residuals over elements and edges. The enriched method is symmetric, locally mass conservative and keeps the degrees of freedom of the original interpolation spaces. First, we assume local enrichments exactly computed and we prove uniqueness and optimal error estimates in natural norms. Then, a low cost two-level finite element method is proposed to effectively obtain enhancing basis functions. The approach lays on a two-scale numerical analysis and shows that well-posedness and optimality is kept, despite the second level numerical approximation. Several numerical experiments validate the theoretical results and compares (favourably in some cases) our results with the classical Raviart-Thomas element