Picture of person typing on laptop with programming code visible on the laptop screen

World class computing and information science research at Strathclyde...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of Open Access research papers by University of Strathclyde researchers, including by researchers from the Department of Computer & Information Sciences involved in mathematically structured programming, similarity and metric search, computer security, software systems, combinatronics and digital health.

The Department also includes the iSchool Research Group, which performs leading research into socio-technical phenomena and topics such as information retrieval and information seeking behaviour.

Explore

Controllers for imposing continuum-to-molecular boundary conditions in arbitrary fluid flow geometries

Borg, Matthew Karl and Macpherson, Graham and Reese, Jason (2010) Controllers for imposing continuum-to-molecular boundary conditions in arbitrary fluid flow geometries. Molecular Simulation, 36 (10). pp. 745-757. ISSN 0892-7022

[img] PDF
Reese_JM_Pure_Controllers_for_imposing_continuum_to_molecular_boundary_conditionsin_arbitrary_fluid_floww_geometries_Sep_2010.pdf - Preprint

Download (1MB)

Abstract

We present a new parallelised controller for steering an arbitrary geometric region of a molecular dynamics (MD) simulation towards a desired thermodynamic and hydrodynamic state. We show that the controllers may be applied anywhere in the domain to set accurately an initial MD state, or solely at boundary regions to prescribe non-periodic boundary conditions (PBCs) in MD simulations. The mean molecular structure and velocity autocorrelation function remain unchanged (when sampled a few molecular diameters away from the constrained region) when compared with those distributions measured using PBCs. To demonstrate the capability of our new controllers, we apply them as non-PBCs in parallel to a complex MD mixing nano-channel and in a hybrid MD continuum simulation with a complex coupling region. The controller methodology is easily extendable to polyatomic MD fluids.