Picture of a black hole

Strathclyde Open Access research that creates ripples...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of research papers by University of Strathclyde researchers, including by Strathclyde physicists involved in observing gravitational waves and black hole mergers as part of the Laser Interferometer Gravitational-Wave Observatory (LIGO) - but also other internationally significant research from the Department of Physics. Discover why Strathclyde's physics research is making ripples...

Strathprints also exposes world leading research from the Faculties of Science, Engineering, Humanities & Social Sciences, and from the Strathclyde Business School.

Discover more...

Fabric anisotropy controls faulting in the continental crust

Butler, R.W. and Bond, Clare E and Shipton, Zoe and Jones, R. and Casey, M. (2008) Fabric anisotropy controls faulting in the continental crust. Journal of the Geological Society, 165 (2). pp. 449-452. ISSN 0016-7649

Full text not available in this repository. (Request a copy from the Strathclyde author)

Abstract

The influence of pre-existing structural anisotropy on faulting in the continents is best tested in recently exhumed crust (e.g. Nanga Parbat Massif, NW Himalayas), where earlier brittle structures have been annealed. The kinematics of young faults, formed in a single, continuing tectonic regime (NNW compression), are distinctly different, depending upon the orientation of the early ductile foliations around them. Faulting is subparallel and statistically simple where foliation is moderately dipping but highly complex where foliation is steeply dipping. Thus structural anisotropy does control faulting in the continental crust, a result with important implications for seismogenesis, fluid flow and basin evolution.