Picture of a black hole

Strathclyde Open Access research that creates ripples...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of research papers by University of Strathclyde researchers, including by Strathclyde physicists involved in observing gravitational waves and black hole mergers as part of the Laser Interferometer Gravitational-Wave Observatory (LIGO) - but also other internationally significant research from the Department of Physics. Discover why Strathclyde's physics research is making ripples...

Strathprints also exposes world leading research from the Faculties of Science, Engineering, Humanities & Social Sciences, and from the Strathclyde Business School.

Discover more...

Microseismicity illuminates open fractures in the shallow crust

Pytharouli, Stella and Lunn, Rebecca and Shipton, Zoe and Kirkpatrick, James and do Nascimento, Aderson (2011) Microseismicity illuminates open fractures in the shallow crust. Geophysical Research Letters, 38. ISSN 0094-8276

Full text not available in this repository. (Request a copy from the Strathclyde author)

Abstract

Successful delivery of geological carbon storage and/or radioactive waste disposal relies on the ability to predict the transport of waste stored/disposed of at depth, over 103 to 106 years. Field evidence shows that faults and fractures can act as focused pathways for contaminant migration. Hence, transport predictions require detailed characterization of fracture location, orientation and hydraulic properties. We show that microseismic monitoring can delineate the three‐dimensional structure and hydraulic characteristics of flowing fractures at 2 to 3 km depth. Individual fracture planes are validated by independently derived composite focal mechanisms. Local field observations confirm the presence of open fractures with lengths and orientations matching the seismically‐derived fracture planes. The temporal evolution of seismicity within individual fractures allows us to estimate depth‐averaged transmissivity and in‐plane fluid velocity distributions. Our results demonstrate the potential of microseismic monitoring to characterize flowing fractures, for non‐invasive site investigation at CO2 and radioactive waste storage/disposal sites.