Strathprints Home | Open Access | Browse | Search | User area | Copyright | Help | Library Home | SUPrimo

Six-node triangle finite volume method for solids with a rotational degree of freedom for incompressible material

Pan, Wenke and Wheel, Marcus and Qin, Yi (2010) Six-node triangle finite volume method for solids with a rotational degree of freedom for incompressible material. Computers and Structures, 88 (23-24). pp. 1506-1511. ISSN 0045-7949

[img] Microsoft Word - Draft Version
Download (449Kb)

    Abstract

    A finite-volume (FV) cell vertex method is presented for determining the displacement field for solids exhibiting with incompressibility. The solid is discretized into six-node finite elements and the standard six-node finite-element shape function is employed for each element. Only control volumes around vertex node of the triangular element are considered. For considering the material incompressibility, a constant hydrostatic pressure as an extra unknown variable within each element is assumed. The force equilibrium in two perpendicular directions and one in-plane moment equilibrium equation are derived for each control volume. The volume conservation is satisfied by setting the integration of volumetric strain as zero within each element. By solving the system control equations, the displacements and rotations of the vertex nodes and the hydrostatic pressure for each element can be obtained and then the displacements of the midside nodes can be calculated. The simulation results show that this FV method passes the patch tests and converges to theoretical results under mesh refinement for material behaviour incompressibility.

    Item type: Article
    ID code: 29019
    Keywords: finite volume method , control volume , vertex centred method , rotational degree, incompressibility, Mechanical engineering and machinery
    Subjects: Technology > Mechanical engineering and machinery
    Department: Faculty of Engineering > Mechanical and Aerospace Engineering
    Faculty of Engineering > Design, Manufacture and Engineering Management
    Related URLs:
      Depositing user: Pure Administrator
      Date Deposited: 15 Mar 2011 11:56
      Last modified: 22 May 2013 16:36
      URI: http://strathprints.strath.ac.uk/id/eprint/29019

      Actions (login required)

      View Item

      Fulltext Downloads: