Picture of athlete cycling

Open Access research with a real impact on health...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of Open Access research papers by Strathclyde researchers, including by researchers from the Physical Activity for Health Group based within the School of Psychological Sciences & Health. Research here seeks to better understand how and why physical activity improves health, gain a better understanding of the amount, intensity, and type of physical activity needed for health benefits, and evaluate the effect of interventions to promote physical activity.

Explore open research content by Physical Activity for Health...

High-current electron beams for high-power free-electron masers based on two-dimensional periodic lattices

Konoplev, Ivan V. and MacInnes, Philip and Cross, Adrian W. and Fisher, Lorna and Phelps, Alan D. R. and He, Wenlong and Ronald, Kevin and Whyte, Colin G. and Robertson, Craig W. (2010) High-current electron beams for high-power free-electron masers based on two-dimensional periodic lattices. IEEE Transactions on Plasma Science, 38 (4). pp. 751-763. ISSN 0093-3813

Full text not available in this repository. Request a copy from the Strathclyde author

Abstract

High-power gigawatt-level radiation can be generated by the interaction of an electromagnetic wave and an annular electron beam with a transverse dimension much larger than the operating wavelength. The use of such a large-circumference annular beam allows the generation of high beam currents while also maintaining low space charge and RF power densities inside the interaction region. This circumvents the problems associated with potential depression in the beam channel and RF breakdown inside the oscillator. In this paper, we present the studies of high-current magnetically confined annular electron beams and discuss their production and transportation through a coaxial beam channel which formed the interaction region of a free-electron maser (FEM). The results from numerical simulations, using the software packages KARAT and MAGIC, are compared with the experimental measurements. The operation of a FEM, driven by a high-current annular electron beam, is presented, and the tunability of the maser, inside a frequency range defined by an input 2-D Bragg mirror, is demonstrated.