Picture of virus under microscope

Research under the microscope...

The Strathprints institutional repository is a digital archive of University of Strathclyde research outputs.

Strathprints serves world leading Open Access research by the University of Strathclyde, including research by the Strathclyde Institute of Pharmacy and Biomedical Sciences (SIPBS), where research centres such as the Industrial Biotechnology Innovation Centre (IBioIC), the Cancer Research UK Formulation Unit, SeaBioTech and the Centre for Biophotonics are based.

Explore SIPBS research

High-current electron beams for high-power free-electron masers based on two-dimensional periodic lattices

Konoplev, Ivan V. and MacInnes, Philip and Cross, Adrian W. and Fisher, Lorna and Phelps, Alan D. R. and He, Wenlong and Ronald, Kevin and Whyte, Colin G. and Robertson, Craig W. (2010) High-current electron beams for high-power free-electron masers based on two-dimensional periodic lattices. IEEE Transactions on Plasma Science, 38 (4). pp. 751-763. ISSN 0093-3813

Full text not available in this repository. (Request a copy from the Strathclyde author)

Abstract

High-power gigawatt-level radiation can be generated by the interaction of an electromagnetic wave and an annular electron beam with a transverse dimension much larger than the operating wavelength. The use of such a large-circumference annular beam allows the generation of high beam currents while also maintaining low space charge and RF power densities inside the interaction region. This circumvents the problems associated with potential depression in the beam channel and RF breakdown inside the oscillator. In this paper, we present the studies of high-current magnetically confined annular electron beams and discuss their production and transportation through a coaxial beam channel which formed the interaction region of a free-electron maser (FEM). The results from numerical simulations, using the software packages KARAT and MAGIC, are compared with the experimental measurements. The operation of a FEM, driven by a high-current annular electron beam, is presented, and the tunability of the maser, inside a frequency range defined by an input 2-D Bragg mirror, is demonstrated.