Strathprints Home | Open Access | Browse | Search | User area | Copyright | Help | Library Home | SUPrimo

Probing the effect of the solution environment on the vibrational dynamics of an enzyme model system with ultrafast 2D-IR spectroscopy

Bonner, G. M. and Ridley, A. R. and Ibrahim, S. K. and Pickett, C. J. and Hunt, N. T. (2010) Probing the effect of the solution environment on the vibrational dynamics of an enzyme model system with ultrafast 2D-IR spectroscopy. Faraday Discussions, 145. pp. 429-442. ISSN 1359-6640

Full text not available in this repository. (Request a copy from the Strathclyde author)

Abstract

Ultrafast 2D-IR spectroscopy has been applied to study the structure and vibrational dynamics of (mu-C(CH3)(CH2S)(2)(CH2S(CH2)(2)Ph)Fe-2(CO)(5), an organometallic model of the active site of the FeFe[hydrogenase] enzyme. 2D-IR spectra have been obtained in solvents ranging from non-polar to polar and protic. The influence of the solvent bath on vibrational relaxation, including rapid intramolecular population transfer, has been characterized. In addition, the temporal dependence of the 2D-IR lineshape has been used to extract information relating to hydrogen bond-mediated spectral diffusion via the frequency-frequency correlation function. Comparisons with previous 2D-IR studies of hydrogenase model systems offer insights into the dependence of the rate of population transfer upon vibrational mode separation and solvent environment, with important implications for the composition and reactivity of the active site of the enzyme.

Item type: Article
ID code: 28975
Keywords: 2-dimensional infrared-spectroscopy, hydrogen-bond dynamics, 2D IR spectroscopy, kerr-effect spectroscopy, effect OHD-OKE, echo spectroscopy, molecular dynamics, only hydrogenase, alanine dipeptide, H-cluster, Physics, Physical and Theoretical Chemistry
Subjects: Science > Physics
Department: Faculty of Science > Physics
Related URLs:
Depositing user: Pure Administrator
Date Deposited: 22 Mar 2011 12:22
Last modified: 27 Mar 2014 09:13
URI: http://strathprints.strath.ac.uk/id/eprint/28975

Actions (login required)

View Item