Picture of athlete cycling

Open Access research with a real impact on health...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of Open Access research papers by Strathclyde researchers, including by researchers from the Physical Activity for Health Group based within the School of Psychological Sciences & Health. Research here seeks to better understand how and why physical activity improves health, gain a better understanding of the amount, intensity, and type of physical activity needed for health benefits, and evaluate the effect of interventions to promote physical activity.

Explore open research content by Physical Activity for Health...

Determination of the photolysis products of [FeFe]hydrogenase enzyme model systems using ultrafast multidimensional infrared spectroscopy

Stewart, Andrew I. and Wright, Joseph A. and Greetham, Gregory M. and Kaziannis, Spiridon and Santabarbara, Stefano and Towrie, Michael and Parker, Anthony W. and Pickett, Christopher J. and Hunt, Neil T. (2010) Determination of the photolysis products of [FeFe]hydrogenase enzyme model systems using ultrafast multidimensional infrared spectroscopy. Inorganic Chemistry, 49 (20). pp. 9563-9573. ISSN 0020-1669

Full text not available in this repository. Request a copy from the Strathclyde author

Abstract

Ultrafast transient 2D-IR (T-2D-IR) spectroscopy has been used to study the photolysis products of the [FeFe]hydrogenase enzyme model compound (mu-propanedithiolate)Fe-2(CO)(6) in heptane solution following irradiation at ultraviolet wavelengths. Observation of coupling patterns between the vibrational modes of the photoproduct species formed alongside examination of the appearance time scales of these signals has uniquely enabled assignment of the photoproduct spectrum to a single pentacarbonyl species. Comparison of the vibrational relaxation rate of the photoproduct with that of the parent is consistent with the formation of a solvent adduct at the vacant coordination site, while anisotropy data in conjunction with density functional theory simulations indicates substitution in an axial rather than equatorial position. No firm evidence of additional short-lived intermediates is seen, indicating that the subsequent chemistry of these species is likely to be strongly defined by the nature of the first solvation shell.