Picture of athlete cycling

Open Access research with a real impact on health...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of Open Access research papers by Strathclyde researchers, including by researchers from the Physical Activity for Health Group based within the School of Psychological Sciences & Health. Research here seeks to better understand how and why physical activity improves health, gain a better understanding of the amount, intensity, and type of physical activity needed for health benefits, and evaluate the effect of interventions to promote physical activity.

Explore open research content by Physical Activity for Health...

Strong light-matter coupling in bulk GaN-microcavities with double dielectric mirrors fabricated by two different methods

Reveret, F. and Bejtka, K. and Edwards, P. R. and Chenot, S. and Sellers, I. R. and Disseix, P. and Vasson, A. and Leymarie, J. and Duboz, J. Y. and Leroux, M. and Semond, F. and Martin, Robert (2010) Strong light-matter coupling in bulk GaN-microcavities with double dielectric mirrors fabricated by two different methods. Journal of Applied Physics, 108 (4). ISSN 0021-8979

[img]
Preview
PDF
Reveret2010JAP108.pdf - Final Published Version

Download (1MB) | Preview

Abstract

Two routes for the fabrication of bulk GaN microcavities embedded between two dielectric mirrors are described, and the optical properties of the microcavities thus obtained are compared. In both cases, the GaN active layer is grown by molecular beam epitaxy on (111) Si, allowing use of selective etching to remove the substrate. In the first case, a three period Al0.2Ga0.8N / AlN Bragg mirror followed by a lambda/2 GaN cavity are grown directly on the Si. In the second case, a crack-free 2,mu m thick GaN layer is grown, and progressively thinned to a final thickness of lambda. Both devices work in the strong coupling regime at low temperature, as evidenced by angle-dependent reflectivity or transmission experiments. However, strong light-matter coupling in emission at room temperature is observed only for the second one. This is related to the poor optoelectronic quality of the active layer of the first device, due to its growth only 250 nm above the Si substrate and its related high defect density. The reflectivity spectra of the microcavities are well accounted for by using transfer matrix calculations. (C) 2010 American Institute of Physics. [doi:10.1063/1.3477450]