Picture of a black hole

Strathclyde Open Access research that creates ripples...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of research papers by University of Strathclyde researchers, including by Strathclyde physicists involved in observing gravitational waves and black hole mergers as part of the Laser Interferometer Gravitational-Wave Observatory (LIGO) - but also other internationally significant research from the Department of Physics. Discover why Strathclyde's physics research is making ripples...

Strathprints also exposes world leading research from the Faculties of Science, Engineering, Humanities & Social Sciences, and from the Strathclyde Business School.

Discover more...

Charge transport in nanocrystal wires created by direct electron beam writing

Jacke, S. and Plaza, J. L. and Wilcoxon, J. P. and Palmer, R. E. and Beecher, P. and De Marzi, G. and Redmond, G. and Quinn, A. J. and Chen, Y. (2010) Charge transport in nanocrystal wires created by direct electron beam writing. Micro and Nano Letters, 5 (5). pp. 274-277. ISSN 1750-0443

Full text not available in this repository. (Request a copy from the Strathclyde author)

Abstract

The authors report the fabrication and electrical characterisation of nanowires created via direct electron beam writing in films of passivated gold nanocrystals. Charge transport measurements yield room temperature resistances in the range 10(5) - 10(8) Omega. Variable temperature measurements yield two distinct sets of characteristics: activated conduction (high resistance) consistent with weakly coupled metal nanocrystals separated by alkyl-thiol tunnel barriers and quasi-localised behaviour (low resistance) consistent with stronger coupling between granular metallic islands in a carbonaceous matrix. The data indicate that electron beam writing is a promising method for local manipulation of inter-nanocrystal coupling in nanocrystal arrays.