Picture of wind turbine against blue sky

Open Access research with a real impact...

The Strathprints institutional repository is a digital archive of University of Strathclyde research outputs.

The Energy Systems Research Unit (ESRU) within Strathclyde's Department of Mechanical and Aerospace Engineering is producing Open Access research that can help society deploy and optimise renewable energy systems, such as wind turbine technology.

Explore wind turbine research in Strathprints

Explore all of Strathclyde's Open Access research content

Spectral enhancement in the double pulse regime of laser proton acceleration

Markey, K. and McKenna, P. and Brenner, C. M. and Carroll, D. C. and Günther, M.M. and Harres, K. and Kar, S. and Lancaster, K. and Nürnberg, F. and Quinn, M. N. and Robinson, A. P. L. and Roth, M. and Zepf, M. and Neely, D. (2010) Spectral enhancement in the double pulse regime of laser proton acceleration. Physical Review Letters, 105 (19). ISSN 0031-9007

Full text not available in this repository. (Request a copy from the Strathclyde author)

Abstract

The use of two separate ultraintense laser pulses in laser-proton acceleration was compared to the single pulse case employing the same total laser energy. A double pulse profile, with the temporal separation of the pulses varied between 0.75-2.5 ps, was shown to result in an increased maximum proton energy and an increase in conversion efficiency to fast protons by up to a factor of 3.3. Particle-in-cell simulations indicate the existence of a two stage acceleration process. The second phase, induced by the main pulse preferentially accelerates slower protons located deeper in the plasma, in contrast to conventional target normal sheath acceleration.