Picture of athlete cycling

Open Access research with a real impact on health...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of Open Access research papers by Strathclyde researchers, including by researchers from the Physical Activity for Health Group based within the School of Psychological Sciences & Health. Research here seeks to better understand how and why physical activity improves health, gain a better understanding of the amount, intensity, and type of physical activity needed for health benefits, and evaluate the effect of interventions to promote physical activity.

Explore open research content by Physical Activity for Health...

Spectral enhancement in the double pulse regime of laser proton acceleration

Markey, K. and McKenna, P. and Brenner, C. M. and Carroll, D. C. and Günther, M.M. and Harres, K. and Kar, S. and Lancaster, K. and Nürnberg, F. and Quinn, M. N. and Robinson, A. P. L. and Roth, M. and Zepf, M. and Neely, D. (2010) Spectral enhancement in the double pulse regime of laser proton acceleration. Physical Review Letters, 105 (19). ISSN 0031-9007

Full text not available in this repository. Request a copy from the Strathclyde author

Abstract

The use of two separate ultraintense laser pulses in laser-proton acceleration was compared to the single pulse case employing the same total laser energy. A double pulse profile, with the temporal separation of the pulses varied between 0.75-2.5 ps, was shown to result in an increased maximum proton energy and an increase in conversion efficiency to fast protons by up to a factor of 3.3. Particle-in-cell simulations indicate the existence of a two stage acceleration process. The second phase, induced by the main pulse preferentially accelerates slower protons located deeper in the plasma, in contrast to conventional target normal sheath acceleration.