Picture of a black hole

Strathclyde Open Access research that creates ripples...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of research papers by University of Strathclyde researchers, including by Strathclyde physicists involved in observing gravitational waves and black hole mergers as part of the Laser Interferometer Gravitational-Wave Observatory (LIGO) - but also other internationally significant research from the Department of Physics. Discover why Strathclyde's physics research is making ripples...

Strathprints also exposes world leading research from the Faculties of Science, Engineering, Humanities & Social Sciences, and from the Strathclyde Business School.

Discover more...

Calibration of Thomson parabola-MCP assembly for multi-MeV ion spectroscopy

Prasad, R. and Doria, D. and Ter-Avetisyan, S. and Fostera, P. S. and Quinn, K. E. and Romagnani, L. and Brenner, C. M. and Green, J. S. and Gallegos, P. and Streeter, M. J. V. and Carroll, D. C. and Tresca, O. and Dover, N. and Palmer, C. A. J. and Schreiber, J. and Neely, D. and Najmudin, Z. and McKenna, P. and Zepf, M. and Borghesi, M. (2010) Calibration of Thomson parabola-MCP assembly for multi-MeV ion spectroscopy. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 623 (2). pp. 712-715. ISSN 0168-9002

Full text not available in this repository. (Request a copy from the Strathclyde author)

Abstract

We report on the absolute calibration of a micro channel plate (MCP) detector, installed as detector in a Thomson parabola spectrometer. The calibration delivers the relation between a registered count numbers in the CCD camera (on which the MCP phosphor screen is imaged) as a result of the impact of an ion beam onto the MCP. The particle response of the whole detection system was evaluated by using laser accelerated ions with proton energies up to 3 MeV and carbon ion energies up to 16 MeV. In order to obtain an absolute measurement of the number of ions incident on the MCP detector, slotted CR-39 track detector was installed in front of the MCP. The signal registered on the MCP due to ions propagating through the CR-39 slots is compared to the number of particles counted on the adjacent CR-39 stripes after the etching. The calibration of the response of MCP has been extended to higher energy ions and protons on the basis of a simple model validated by comparison with the calibration data. This sensitive detection set-up makes it possible to measure in a single laser shot the ion spectrum in absolute terms. (C) 2010 Elsevier B.V. All rights reserved.