Picture of wind turbine against blue sky

Open Access research with a real impact...

The Strathprints institutional repository is a digital archive of University of Strathclyde research outputs.

The Energy Systems Research Unit (ESRU) within Strathclyde's Department of Mechanical and Aerospace Engineering is producing Open Access research that can help society deploy and optimise renewable energy systems, such as wind turbine technology.

Explore wind turbine research in Strathprints

Explore all of Strathclyde's Open Access research content

Low emittance, high brilliance relativistic electron beams from a laser-plasma accelerator

Brunetti, E. and Shanks, Richard and Manahan, G. G. and Islam, M. R. and Ersfeld, B. and Anania, M. P. and Cipiccia, S. and Issac, R. C. and Raj, G. and Vieux, G. and Welsh, G. H. and Wiggins, S. M. and Jaroszynski, D. A. (2010) Low emittance, high brilliance relativistic electron beams from a laser-plasma accelerator. Physical Review Letters, 105 (21). ISSN 0031-9007

Full text not available in this repository. (Request a copy from the Strathclyde author)

Abstract

Progress in laser wakefield accelerators indicates their suitability as a driver of compact free-electron lasers (FELs). High brightness is defined by the normalized transverse emittance, which should be less than 1 pi mm mrad for an x-ray FEL. We report high-resolution measurements of the emittance of 125 MeV, monoenergetic beams from a wakefield accelerator. An emittance as low as 1.1 +/- 0.1 pi mm mrad is measured using a pepper-pot mask. This sets an upper limit on the emittance, which is comparable with conventional linear accelerators. A peak transverse brightness of 5 x 10(15) Am-1 rad(-1) makes it suitable for compact XUV FELs.