Picture of athlete cycling

Open Access research with a real impact on health...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of Open Access research papers by Strathclyde researchers, including by researchers from the Physical Activity for Health Group based within the School of Psychological Sciences & Health. Research here seeks to better understand how and why physical activity improves health, gain a better understanding of the amount, intensity, and type of physical activity needed for health benefits, and evaluate the effect of interventions to promote physical activity.

Explore open research content by Physical Activity for Health...

R-matrix electron-impact excitation data for the Ne-like iso-electronic sequence

Liang, G. Y. and Badnell, N. R. (2010) R-matrix electron-impact excitation data for the Ne-like iso-electronic sequence. Astronomy and Astrophysics, 518 (July/A). ISSN 0004-6361

Full text not available in this repository. Request a copy from the Strathclyde author

Abstract

We present results for the electron-impact excitation of all Ne-like ions from Na+ to Kr26+ obtained using the intermediate-coupling frame transformation R-matrix approach. For each ion's calculation, the close-coupling expansion is taken to be the 113 LS terms (209 levels) belonging to the configurations [1s(2)]2s(2)2p(6), 2s(2)2p(5){3, 4, 5}l, 2s2p(6){3, 4, 5}l (l is an element of s, p, d, f, and g), and 2s(2)2p(5){6, 7} l' (l' is an element of s, p, and d). An additional configuration interaction effect arising from configurations of 2s(2)2p(4)3l{3, 4, 5}l" (l" is an element of s, p, d, f and g) was included in the target expansion. A detailed comparison of the target structure has been made for six specific ions (Si4+, Ar8+, Ca10+, Fe16+, Ni18+, and Kr26+) spanning the sequence to assess the accuracy for the entire sequence. Effective collision strengths (Gamma s) are presented at temperatures ranging from 2x10(2)(q+1)(2) K to 2x10(6)(q+1)(2) K (where q is the residual charge of ions, i. e. Z-10). Detailed comparisons for the.s are made with the results of previous calculations for several ions, which span the sequence. Furthermore, we examine the iso-electronic trends of effective collision strengths as a function of temperature. The present results are the only R-matrix ones for the majority of the ions and the most extensive and complete data for modelling to-date.