Picture of smart phone in human hand

World leading smartphone and mobile technology research at Strathclyde...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of Open Access research papers by University of Strathclyde researchers, including by Strathclyde researchers from the Department of Computer & Information Sciences involved in researching exciting new applications for mobile and smartphone technology. But the transformative application of mobile technologies is also the focus of research within disciplines as diverse as Electronic & Electrical Engineering, Marketing, Human Resource Management and Biomedical Enginering, among others.

Explore Strathclyde's Open Access research on smartphone technology now...

Selective excitation of tryptophan fluorescence decay in proteins using a sub-nanosecond 295 nm light-emitting diode and time-correlated single-photon counting

McGuiness, C.D. and Sagoo, K. and McLoskey, D. and Birch, D.J.S. (2005) Selective excitation of tryptophan fluorescence decay in proteins using a sub-nanosecond 295 nm light-emitting diode and time-correlated single-photon counting. Applied Physics Letters, 86. p. 261911. ISSN 0003-6951

Full text not available in this repository. (Request a copy from the Strathclyde author)

Abstract

We demonstrate an AlGaN light-emitting diode (LED) giving pulses of ~600 ps full width half maximum, 0.35 W average power, 0.6 mW peak power, and ~12 nm bandwidth at 295 nm. This source is ideal for protein intrinsic tryptophan fluorescence decay research without the unwanted excitation of tyrosine and paves the way to lab-on-a-chip protein assays using fluorescence decay times. Fluorescence decay and anisotropy decay measurements of human serum albumin are reported and the usefulness of the 295 nm LED demonstrated in comparisons with a nanosecond flashlamp and LEDs with nominal wavelength emission of 280 nm.