Picture of a black hole

Strathclyde Open Access research that creates ripples...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of research papers by University of Strathclyde researchers, including by Strathclyde physicists involved in observing gravitational waves and black hole mergers as part of the Laser Interferometer Gravitational-Wave Observatory (LIGO) - but also other internationally significant research from the Department of Physics. Discover why Strathclyde's physics research is making ripples...

Strathprints also exposes world leading research from the Faculties of Science, Engineering, Humanities & Social Sciences, and from the Strathclyde Business School.

Discover more...

Advantages of using microfabricated extracellular electrodes for in vitro neuronal recording

Breckenridge, L. and Wilson, R.J.A. and Connolly, P. and Curtis, A.S.G. and Dow, J.A.T. and Blackshaw, E. and Wilkinson, C.D.W. (1995) Advantages of using microfabricated extracellular electrodes for in vitro neuronal recording. Journal of Neuroscience Research, 42 (2). pp. 266-276. ISSN 0360-4012

Full text not available in this repository. (Request a copy from the Strathclyde author)

Abstract

We describe fabrication methods and the characterisation and use of extracellalar microelectrode arrays for the detection of action potentials from neurons in culture. The 100 μm2 platinised gold microelectrodes in the 64 electrode array detect the external current which flows during an action potential with S:N ratios of up to 500:1, giving a maximum recorded signal of several millivolts. The performance of these electrodes is enhanced if good sealing of the cells over the electrodes is obtained and further enhanced if the electrodes and the cells lie in a deep groove in the substratum. The electrodes can be used for both recording and stimulation of activity in cultured neurons and for recording from multiple sites on a single cell. The use of such electrodes to obtain recordings from invertebrate neurons is described. The particular advantages of these electrodes, their long term stability, non-invasive nature, high packing density, and utility in stimulation, are demonstrated.