Picture of a black hole

Strathclyde Open Access research that creates ripples...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of research papers by University of Strathclyde researchers, including by Strathclyde physicists involved in observing gravitational waves and black hole mergers as part of the Laser Interferometer Gravitational-Wave Observatory (LIGO) - but also other internationally significant research from the Department of Physics. Discover why Strathclyde's physics research is making ripples...

Strathprints also exposes world leading research from the Faculties of Science, Engineering, Humanities & Social Sciences, and from the Strathclyde Business School.

Discover more...

Simultaneous multisite recordings and stimulation of single isolated leech neurons using planar extracellular electrode arrays

Wilson, R.J.A. and Breckenridge, L. and Blackshaw, S.E. and Connolly, P. and Dow, J.A.T. and Curtis, A.S.G. (1994) Simultaneous multisite recordings and stimulation of single isolated leech neurons using planar extracellular electrode arrays. Journal of Neuroscience Methods, 53 (1). pp. 101-110.

Full text not available in this repository. (Request a copy from the Strathclyde author)

Abstract

Planar extracellular electrode arrays provide a non-toxic, non-invasive method of making long-term, multisite recordings with moderately high spatial frequency (recording sites per unit area). This paper reports advances in the use of this approach to record from and stimulate single identified leech neurons in vitro. A modified enzyme treatment allowed identified neurons to be extracted with very long processes. Multisite extracellular recordings from the processes of such isolated neurons revealed both the velocity and direction of action potential propagation. Propagation in two cell types examined was from the broken stump towards the cell body (antidromic). This was true for spontaneous action potentials, action potentials produced by injecting current into the cell body and extracellular stimulation of the extracted process via a planar extracellular electrode. These results extend previous findings which have shown that the tip of the broken stump of extracted neurons has a high density of voltage-activated sodium channels. Moreover they demonstrate the applicability of extracellular electrode arrays for recording the electrical excitability of single cells.