Picture of smart phone in human hand

World leading smartphone and mobile technology research at Strathclyde...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of Open Access research papers by University of Strathclyde researchers, including by Strathclyde researchers from the Department of Computer & Information Sciences involved in researching exciting new applications for mobile and smartphone technology. But the transformative application of mobile technologies is also the focus of research within disciplines as diverse as Electronic & Electrical Engineering, Marketing, Human Resource Management and Biomedical Enginering, among others.

Explore Strathclyde's Open Access research on smartphone technology now...

Laser action in a surface-structured free-standing membrane based on a π-conjugated polymer-composite

Chen, Yujie and Herrnsdorf, Johannes and Guilhabert, Benoit and Kanibolotsky, Alexander L. and Mackintosh, Allan R. and Wang, Yue and Pethrick, Richard A. and Gu, Erdan and Turnbull, Graham A. and Skabara, Peter J. and Samuel, Ifor D. W. and Laurand, Nicolas and Dawson, Martin D. (2011) Laser action in a surface-structured free-standing membrane based on a π-conjugated polymer-composite. Organic Electronics, 12 (1). pp. 62-69. ISSN 1566-1199

This is the latest version of this item.

Full text not available in this repository. (Request a copy from the Strathclyde author)

Abstract

A free-standing organic composite membrane distributed feedback (DFB) laser template-patterned by a commercially-available blank digital versatile disk (DVD) is demonstrated. This laser operates at room-temperature and ambient atmosphere and is based on a specifically designed composite incorporating a recently introduced organic semiconductor polymer system, green light-emitting π-conjugated poly[2,5-bis(2′,5′-bis(2″-ethylhexyloxy)phenyl)-p-phenylene vinylene] (BBEHP-PPV), as the gain element. This flexible organic membrane laser oscillates around 521 nm above a 1.1 mJ/cm2 threshold. Optical gain characteristics of the composite material are also reported. The approach represents a step towards viable low-cost, even ‘disposable’ organic solid-state lasers.

Available Versions of this Item

  • Laser action in a surface-structured free-standing membrane based on a π-conjugated polymer-composite. (deposited 19 May 2011 09:14) [Currently Displayed]