Picture of virus under microscope

Research under the microscope...

The Strathprints institutional repository is a digital archive of University of Strathclyde research outputs.

Strathprints serves world leading Open Access research by the University of Strathclyde, including research by the Strathclyde Institute of Pharmacy and Biomedical Sciences (SIPBS), where research centres such as the Industrial Biotechnology Innovation Centre (IBioIC), the Cancer Research UK Formulation Unit, SeaBioTech and the Centre for Biophotonics are based.

Explore SIPBS research

Electronic, redox and charge transport properties of an unusal hybrid structure : A bis(septithiophene) bridged by a fused tetrathiafulvalene (TTF)

Wright, I. and Skabara, P.J. and Forgie, J.C. and Kanibolotsky, A.L. and González, Blanca and Coles, Simon J. and Gambino, Salvatore and Samuel, Ifor D. W. (2011) Electronic, redox and charge transport properties of an unusal hybrid structure : A bis(septithiophene) bridged by a fused tetrathiafulvalene (TTF). Journal of Materials Chemistry, 21 (5). pp. 1462-1469. ISSN 0959-9428

Full text not available in this repository. (Request a copy from the Strathclyde author)

Abstract

A hybrid tetrathiafulvalene-oligothiophene compound has been synthesised, in which the fulvalene unit is fused on both sides to an end-capped septithiophene oligomer. The compound (1) has been studied by cyclic voltammetry, UV-vis spectroelectrochemistry and X-ray crystallography. The properties of this material are compared to the half-unit (9), which lacks the TTF core and contains only one septithiophene chain. In the case of the larger molecule, there are multiple and complex redox processes leading to the loss of 6-8 electrons per molecule. Charge generation layer time-of-flight measurements give maximum hole mobilities of ca. 1 × 10-5 cm2 V-1 s-1.