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Abstract

Here we present a collection of advanced data-mining techniques that allows the seman-

tics of individual concepts to be decoded from single trials of EEG data. Neural activity

was recorded while participants silently named images of mammals and tools, and cat-

egory could be detected in single trials with an accuracy well above chance, both when

considering data from single participants, and when group-training across participants.

The pattern of classifications made by the algorithm confirmed that the neural patterns

identified are due to conceptual category, and not any of a series of processing-related

confounds. The time intervals, frequency bands and scalp locations that proved most in-

formative for prediction permit physiological interpretation: the widespread activation

shortly after appearance of the stimulus (from 100ms) is consistent both with accounts

of multi-pass processing, and distributed representations of categories. These meth-

ods provide a new alternative to fMRI for fine-grained investigations of the conceptual

lexicon.

1. Introduction

Recordings of brain activity from neuroimaging and electrophysiological techniques

have established themselves as crucial sources of evidence in the study of semantic rep-

resentations. Imaging studies (e.g. Martin and Chao, 2001; Chao et al., 2002) have
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provided ample evidence supporting hypotheses concerning the localization of concep-

tual knowledge derived from earlier work with patients displaying semantic category

deficits (Warrington and Shallice, 1984; Caramazza and Mahon, 2003). Now com-

putationally intensive methods are increasingly becoming the method of choice for

analysing such data (Haxby et al., 2001; Haynes and Rees, 2006; Shinkareva et al.,

2008). The low signal-to-noise ratio of neural recordings means that many regularities

remain hidden and can only be detected through large-scale pattern analysis (Norman

et al., 2006).

However, such methods have generally led to very high-level insights about concep-

tual representations, rather than to answers to the more fine-grained questions raised by

studies in other paradigms, such as behavioural experiments (Quillian, 1967; Collins

and Quillian, 1970; Rosch, 1973; Smith et al., 1974; Neely, 1991), judgements elicited

from informants (McRae et al., 2005; Vinson and Vigliocco, 2008), language acqui-

sition work (Mandler, 1992; Bloom, 2002), computational simulations (Plaut, 1995;

McClelland and Rogers, 2003) or models derived from corpora (Lund et al., 1995; Lan-

dauer and Dumais, 1997; Rapp, 2004; Poesio and Almuhareb, 2005; Padó and Lapata,

2007; Baroni et al., 2010) – not to mention work on formal models such as Pustejovsky

(1995); Kamp and Partee (1995). Most studies examine only very coarse-grained dis-

tinctions, for example comparing abstract and concrete concepts, verbs and nouns, or

natural and artefactual kinds (Pulvermüller, 2002). A further limitation of this work

is that the well-established differences seen between groups of stimuli representing

natural and artefactual concepts (e.g. Kiefer, 2001; Chao et al., 2002) are compatible

with a number of interpretations. Since the natural concepts investigated are predomi-

nantly animals and plants, and artefactual stimuli are typically small functional objects

conventionally termed ‘tools’, several semantic distinctions provide plausible expla-

nations: biological/non-biological entities, larger/smaller objects, moving/non-moving

entities, sentient/non-sentient entities and manipulable/non-manipulable objects. More
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pessimistically, such effects could be due to confounding variables (e.g. lexical fre-

quency, image complexity) that may vary systematically across stimulus groups. Fi-

nally, the statistics applied to neural data tend to identify single or small numbers of

loci in the neural activity (at a precise location and approximate timing with fMRI; at

a precise time and approximate location with EEG) that are activated differentially by

each group of stimuli. This is despite the fact that recent experimental work demon-

strates more widely spread and overlapping activations (e.g. Haxby et al., 2001; Pul-

vermüller, 2005; Mitchell et al., 2008), consistent with theories that favour distributed

representations (Spitzer, 1999; Tyler and Moss, 2001; Barsalou, 2003).

We believe that large-scale, systematic explorations of the mental lexicon with neu-

ral data are necessary, involving both a more careful analysis of conceptual distinc-

tions and a greater range of categories. However, the high cost of fMRI studies may

make such systematic explorations impractical. Fortunately, the theory that concep-

tual knowledge is distributed would predict some form of synchronization between the

relevant areas, of the kind that may be detected using EEG.

In this paper we detect which of two familiar semantic classes are being processed

(land mammals or work tools, which should have similar conceptual representations

across languages), by applying data mining and machine learning techniques to single

trials of recorded EEG signals. The behavioural task was a simple one that requires

activation of conceptual representations: silent naming of image stimuli, WHICH IN-

VOLVES OBJECT RECOGNITION, lexical retrieval and sub-vocal language production.

AS IS DISCUSSED IN THE FOLLOWING SECTION, TASKS THAT INVOLVE CONCEP-

TUAL PROCESSING HAVE BEEN SHOWN TO ELICIT NEURAL RESPONSES THAT PER-

SIST ACROSS TASKS IN THE VISUAL AND AUDITORY MODALITY, AND FOR IMAGE

AND LEXICAL STIMULI, SUGGESTING THAT THEY ACCESS A NEXUS OF LINGUIS-

TIC KNOWLEDGE AND PERCEPTUAL EXPERIENCE.

Our adaptive analyses search through the signal to identify the scalp locations, time
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intervals and frequency bands at which the categorial distinction is most clearly present.

On this basis, we can predict the semantic category of a single stimulus presentation

with an accuracy well above chance both when training and evaluation data come from

the same participant (mean 72%, p<0.001, binomial test with chance at 0.5), and when

they come from different participants (mean 61%, p<0.001). By amalgamating pre-

dictions over multiple analyses, the categorial membership of single stimuli can be

determined with an accuracy of 98%. Crucially, since the analysis technique can clas-

sify single stimulus trials, a range of lexical, visual and task-related confounding vari-

ables can be excluded as possible explanations for the performance of the algorithm,

allowing us to conclude that the activations that are identified correspond to conceptual

distinctions rather than group differences in the cognitive load of perceptual processing,

lexical search, or other task-related activity.

The paper proceeds as follows. The next section provides additional theoretical

background, particularly on the relationship between the patterns identified by the al-

gorithm and underlying brain physiology and function. Section 3 describes in detail

the experimental paradigm used, and the analytical methods applied. Classification

results are given in section 4, for analyses on individual participant sessions and group-

prediction across participants, together with a regression model analysis to establish

that the accuracies achieved are not due to confounding variables, whether singly or

in combination. Finally, in the discussion section we consider the physical and func-

tional interpretation of the results, and what future directions could be taken with this

analytical paradigm.

2. Background

Early work on the neural instantiation of conceptual knowledge suggested that dif-

ferent kinds of semantic information are isolated in anatomically distinct areas of the

brain. Work with brain damaged patients (Warrington and Shallice, 1984) found selec-

tive impairment of conceptual knowledge on animals and tools, leading to the hypoth-
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esis that sensory (primarily visual) and functional (conventional uses and associated

behaviours) properties were located in different brain areas. Brain imaging work that

followed (Martin et al., 1996) was consistent with the related proposal (Caramazza and

Shelton, 1998) that animate and inanimate kinds were localised in different parts of

cortex. Such studies also provided evidence that the location of these activations is

largely consistent across individuals and across tasks (Martin and Chao, 2001).

More recent work however seems to indicate that the neural patterns associated

with the representation of conceptual knowledge are more complex than such ‘hot-

spot’ models would suggest. Haxby et al. (2001) demonstrated that neural activity

in marginal and overlapping areas of cortex, beyond the foci of activity identified by

conventional statistical tests, could be used to correctly decode the semantic category of

image stimuli presented during an fMRI session. Mitchell et al. (2008) showed that the

meaning of concrete nouns could be decomposed into properties that held a predictive

relationship with widely distributed activities in the brain.

MUCH OF THE WORK JUST CITED USES IMAGE STIMULI, AND SO THESE EF-

FECTS COULD BE INTERPRETED AS BEING DUE TO VISUAL REGULARITIES THAT

ARE CONFOUNDED WITH SEMANTIC CLASS. BUT DISTRIBUTED CONCEPTUAL REP-

RESENTATIONS HAVE ALSO BEEN OBSERVED DURING PASSIVE LINGUISTIC TASKS

THAT DID NOT INVOLVE VISUAL PRESENTATION (PULVERMÜLLER, 2005). AND

THE DISSOCIATIONS IN NEURAL ACTIVITY THAT ARE TYPICALLY SEEN DURING

OBJECT RECOGNITION HAVE ALSO BEEN OBSERVED DURING READING OF WORD

STIMULI, BOTH WITH PET (PERANI ET AL., 1999) AND FMRI (CHAO ET AL.,

1999). THE FACT THAT CONGENITALLY BLIND PARTICIPANTS (MAHON ET AL.,

2009) ALSO SHOW THESE PATTERNS, DEMONSTRATES THAT THIS CANNOT BE A

SECONDARY EFFECT VISUAL EXPERIENCE EVOKED BY WORD STIMULI. FURTHER

EVIDENCE FOR THE MODALITY-INDEPEDENCE OF THESE REPRESENTATIONS AT

A FINER SPATIAL SCALE IS PROVIDED BY CONNOLLY AND HAXBY (2010), WHO
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SHOW THAT PATTERNS OF NEURAL ACTIVITY IN EARLY VISUAL AREAS RELFECT

PERCEPTUAL ATTRIBUTES, THE VENTRAL TEMPORAL CORTEX ENCODES CONCEP-

TUAL DISTINCTIONS.

Such empirical work is consistent with recent theories that hold that conceptual

knowledge is distributed, perhaps taking the form of a ‘conceptual map’ (Spitzer, 1999),

of ‘situated simulations’ (Barsalou, 2003) or of a ‘word web’ (Pulvermüller, 2002),

according to which concepts are represented in ‘neuron webs’ with distinct cortical

topographies, AND WHERE CONCEPTUAL REPRESENTATIONS FORM A NEXUS BE-

TWEEN PERCEPTUAL EXPERIENCE AND LINGUISTIC KNOWLEDGE.

This suggests the need for some form of synchronization between the firing of

these neurons, of the kind that might be detected with EEG. Indeed Tallon-Baudry and

Bertand (1999) make just such a proposal, and find evidence of event-related synchroni-

sation in the gamma band (≈40Hz) during object recognition. Here we are interested in

differential activation to semantic classes, and category specific differences in spectral

power have been found at lower frequencies (in the band 1-20 Hz) with MEG (Gilbert

et al., 2009) for animals versus tools, and with EEG for faces versus other objects (Rous-

selet et al., 2007). ERP evidence of category specificity has been found at both early

(≈150ms, Rossion et al., 2003; Itier and Taylor, 2004) and late (≈400ms, Kiefer, 2001)

intervals after onset during image processing tasks. Some work interprets the first in-

terval as being tied to perceptual differences and the second to semantic processing – a

conclusion corroborated by Paz-Caballero et al. (2006), who found that the early ERPs

were modulated by task, while the later ones were not. While other research suggests

that the first burst of activity is driven by higher-level conceptual differences – Rous-

selet et al. (2007) compare faces to visually balanced (image configuration, spectral

frequencies, and brightness histograms) houses, meaning that low-level visual differ-

ences (form and texture) cannot account for the effects; and Rousselet et al. (2004) see

the same effects for animals versus inanimate objects, meaning that they are not specific
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to the interpretation of human faces (e.g. determining identity, reading expressions).

As already noted, the majority of neuroimaging studies of semantic category rely

on group effects, revealed with grand averages across trials and participants. In the

case of EEG, this is due to the impoverished nature of the signal that can be detected

at the scalp. Here, we use a discriminative data-mining technique developed for Brain-

Computer-Interaction purposes (Dalponte et al., 2007), to perform category-based clas-

sification of single trials. The algorithm first identifies the time interval, frequency

band and combination of scalp locations in the EEG signals that best distinguish the

categories. It is a supervised method in that a portion of the neural data, labelled for

semantic category, is used for learning (the “training” data), and the remaining data is

then used to test the quality of learning (the “evaluation” data) by comparing the true

category labels to those predicted by the algorithm. The signal decomposition used

(CSP, Koles et al., 1990) yields measures of signal spectral power that respond selec-

tively to the stimulus (analogous to event related synchronisation/desynchronisation,

or ERS/ERD; see Pfurtscheller and Lopes da Silva, 1999)2 and that correspond to syn-

chronous neural sub-assemblies, or networks of sub-assemblies, that are functionally

related to the processing or representation of semantic classes. A generic machine

learning algorithm then uses these measures of spectral power to classify single stimu-

lus trials that were excluded from the training phase.

3. Methods

3.1. Participants

Seven staff and post-graduate students at the University of Trento took part in the

study, all native speakers of Italian. Five of the participants were male and two fe-

male (age range 25-33, mean 29). One identified herself as left-handed, and two as

2In conventional measures of signal power (ERS/ERD, or ERSP in the terminology of Delorme and
Makeig, 2003) power estimates are calculated relative to a baseline preceding each epoch. In this work,
power estimates are absolute measures for each epoch, and comparisons are made across epochs. Here these
measures will be termed “spectral power”.
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ambidextrous or of mixed-handedness. All had normal or corrected-to-normal vision.

Participants received compensation of C7 per hour. The studies were conducted under

the approval of the ethics committee at the University of Trento, and participants gave

informed consent.

3.2. Experimental Paradigm

Participants were asked to perform a silent naming task on grey-scale images of 30

land-mammals and 30 work tools. Each stimulus was presented six times, for a total

360 trials, their order being randomized on each session.3 Participants sat in a relaxed

upright position 60cm from a computer monitor in reduced lighting conditions. Images

were presented on a medium grey background and fell within a 10° viewing angle. The

task duration was split into four blocks and participants were given the choice to pause

between each. The cumulative task time did not exceed 45 minutes.

Each trial began with the presentation of a fixation cross for 0.5s, followed by the

stimulus image, a further fixation cross for 0.5s and a blank screen for 2s. Participants

were instructed to silently name the object represented in their native tongue (Italian),

using the first appropriate label that came to mind, and to press the keyboard space-

bar with the left-hand to indicate they had found an appropriate word. If participants

could not think of a suitable label, they were asked not to make a response. The image

remained on the screen until the participant responded, or until a time-out of three

seconds was reached. Participants were asked to keep still during the task, and to avoid

eye-movements and facial muscle activity in particular, except during the 2s blank

period.

Mean reaction times varied from 1s (participant C) to 1.8s (participant G), and null-

responses ranged from 1% to 7%. After the experimental session, each participant was

asked to complete a questionnaire, in which they recorded the names they used during

3The first three participants viewed a slightly larger set of images (42 animals, 44 tools) some of which
were discarded in later experiments due to difficulty of naming. All analyses reported in this paper refer to
the reduced set of 30 animals and 30 tools.
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the EEG session. In particular they were asked to indicate whether they were unable to

identify any of the stimuli, could not find an appropriate name, or used multiple labels

on the various presentations of a single stimulus. Naming agreement in this task ranged

from 87% to 90%.

3.3. Materials

As mentioned in the introduction, the semantic categories used in studies of this

kind are often somewhat arbitrary and so can present problems for the interpretation

of results. Here a set of 30 land mammals were chosen to be both non-domesticated

and non-threatening, to avoid emotional confounds whether positive (e.g. pets) or neg-

ative (e.g. predators). Thirty hardware and garden implements were chosen as genuine

work tools. Appropriate photographs were sourced from the internet, and normalised

visually (see Figure S.5 in the supplementary materials): each image file measured 300

pixels square; the image proper was converted to grey-scale, superimposed on a homo-

geneous light-grey background and had maximal horizontal and vertical dimensions of

250 pixels; image contrast was normalised.4 The concepts represented are listed below.

Land Mammals ant-eater, armadillo, badger, beaver, bison, boar, camel, chamois,

chimpanzee, deer, elephant, fox, giraffe, gorilla, hare, hedgehog, hippopotamus,

ibex, kangaroo, koala, llama, mole, monkey, mouse, otter, panda, rhinoceros,

skunk, squirrel, zebra (Italian formichiere, armadillo, tasso, castoro, bisonte,

cinghiale, cammello, camoscio, scimpanzè, cervo, elefante, volpe, giraffa, go-

rilla, coniglio, riccio, ippopotamo, stambecco, canguro, koala, lama, talpa, scim-

mia, topo, lontra, panda, rinoceronte, puzzola, scoiattolo, zebra)

Work Tools Allen key, axe, chainsaw, craft-knife, crowbar, file, garden fork, gar-

den trowel, hacksaw, hammer, mallet, nail, paint brush, paint roller, penknife,

pick-axe, plaster trowel, pliers, plunger, pneumatic drill, power-drill, rake, saw,

4Using the ImageMagick function normalise; see http://www.imagemagick.org/.
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scissors, scraper, screw, screwdriver, sickle, spanner, tape-measure (Italian bru-

gola, ascia, motosega, taglierino, piede di porco, lima, forcone, paletta, seghetto,

martello, mazza, chiodo, pennello, rullo, coltellino svizzero, piccone, cazzuola,

pinza, stura lavandini, martello pneumatico, trapano, rastrello, sega, forbici, spa-

tola, vite, cacciavite, falce, chiave inglese, metro)

3.4. Recording and Preprocessing

The experiment was conducted at the CIMeC/DiSCoF laboratories at Trento Uni-

versity, using a 64-electrode Brain Vision BrainAmp system, recording at 500Hz. A

wide-coverage montage based on the 10-20 system was used, with a single right ear-

lobe reference, and ground at location AFz. Electrode impedances were generally kept

below 10kΩ. However, sessions including electrodes that exceeded this limit were still

included in subsequent analysis, as the techniques used proved robust to such noise.

Data preprocessing was conducted using the EEGLAB package (Delorme and Makeig,

2003). The data was band-pass filtered at 1-120Hz to remove slow drifts in the sig-

nal and high-frequency noise, and then down-sampled to 300Hz.5 An ICA analysis

was next applied using the EEGLAB implementation of the Infomax algorithm (Makeig

et al., 1996). Artefactual ICA components were then identified and removed by hand in

each data-set. In all cases, eye-artefact components were removed – usually one com-

ponent for vertical movements including blinks, and another for horizontal movements.

In a few cases components were found that isolated 50Hz electrical noise, or electrode

specific noise (usually due to problems with impedance), but in general a conservative

approach was taken, leaving such components in the signal to avoid the inadvertent

removal of neural activity. It was not possible to remove muscle noise, as such activity

was rarely isolated in a single component. However the adaptive analysis techniques

used proved robust to both intermittent and continuous muscle noise.

5In some cases data was further filtered and re-sampled to lower rates (between 150Hz and 100Hz) to
reduce the computational memory requirements of the analysis, after exploratory analyses had determined
that the higher frequencies thus excluded were not informative for classification.
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3.5. Analysis

The analysis method (Dalponte et al., 2007) consists of a time/frequency window

search to identify an information-rich band and interval for the distinction of interest;

a supervised decomposition (Common Spatial Patterns, or CSP – see Parra et al., 2005;

Model and Zibulevsky, 2006; Philiastides et al., 2006 for examples of other applica-

tions to cognitive neuroscience) to extract components of whole-scalp synchronous

activity that are sensitive to this class distinction; and a general purpose machine learn-

ing algorithm (Support-Vector Machine or SVM) that uses the resulting measures of

spectral power to predict the semantic class of each trial. Individual trial epochs are

arbitrarily allocated to one of k interlaced partitions of equal size in a k-fold train-

ing/evaluation procedure (e.g. in a 3-fold partition, one third of the data is held out in

turn for evaluation, and training is performed on the remaining two thirds).

The time/frequency window search was developed for Brain-Computer Interface

(BCI) applications, achieving state-of-the-art performance on a competition task in-

volving imagined hand and foot movements (Dalponte et al., 2007). The goal of the

technique is to define the best combination of time and frequency intervals for the

separation of the analysed categories. This method can be divided into two parts: a

search strategy, and a computation of resulting class separability. The search strategy

used in this paper was a grid-based region search: the time range (0-500ms, relative

to the appearance of the stimulus) and frequency range (0-50Hz) of interest were di-

vided into 15 intervals of equal length (33ms and 3.3Hz respectively), to yield a total

of 120 time spans (0-33ms, 0-67ms, 0-100ms, ..., 467-500ms) and 120 frequency spans

(0-3.3Hz, 0-6.7Hz, 0-10Hz, ..., 46.7-50Hz), and all binary combinations of these spans

were explored. For each of these 14,400 time/frequency windows, the signal data was

band-pass filtered, cropped in time, and the class-labelled trials were processed with

CSP to extract class-sensitive measures of spectral power (as described below). The

computation of class-separability used the Bhattacharyya distance, a probabilistic mea-

11



sure of cluster separation (Bhattacharyya, 1943; Bruzzone et al., 1995). Of all the win-

dows examined, the combination of time and frequency spans that yields the largest

separation between classes is considered the most informative window for classifica-

tion purposes. TO AVOID THE DANGERS OF “DOUBLE-DIPPING” (PEREIRA ET AL.,

2009; KRIEGESKORTE ET AL., 2009), THE WINDOWING PARAMETERS SELECTED

FOR TESTING PREDICTION ACCURACY IN EACH PARTICIPANT WERE OPTIMIZED ON

THE BASIS OF THE DATA FROM THE REMAINING SIX PARTICIPANTS ONLY.

The decomposition method used, CSP (Koles et al., 1990), can be considered sim-

ilar to PCA or ICA, in that it extracts components of EEG activity that correspond to

synchronous neural sub-assemblies. However it differs in that it is a supervised tech-

nique, in which the class-membership of each trial is also input to the algorithm. Thus,

rather than extracting C new component signals of whole-scalp activity (where C is the

number of input EEG channels) without regard to the task as PCA/ICA do, CSP ex-

tracts a series of components that are ranked by their sensitivity to the class-separation

of interest, with an optimal variance for the two populations of EEG signals (i.e., high

variance between classes and low variance within classes). In the considered case CSP

extracts a set of C components jointly ranked by the amplitude of the signal found in

trials of the first class (Mammals, ωMammals) and inversely by their signal amplitude

during trials of the second class (Tools, ωTools).

The CSP decomposition is calculated as follows. Let E be a single trial of EEG

signal, represented as a C×T matrix, where C is the number of recording electrodes

(64 in this case) and T is the number of samples per epoch. The transformation matrix

that permits the extraction of signal components specific to the classification is derived

with the following steps:

1. Let R be the normalized spatial covariance of a signal trial, defined as:

R =
EET

trace(EET )
(1)
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2. Compute the average normalized spatial covariance matrices RTools and RMammals

for trials ωTools and ωMammals, respectively, by averaging over all the trials of the

same class.

3. Compute the composite spatial covariance matrix as:

RC = RTools +RMammals = UCλCUT
C (2)

where UC is the matrix of the eigenvectors and λC is the diagonal matrix of the

eigenvalues of RC.

4. Let P be the whitening transformation matrix computed as:

P =
√

λ−1
C UT

C (3)

5. Transform the matrices RTools and RMammals individually as:

STools = PRToolsPT , SMammals = PRMammalsPT (4)

These two matrices share common eigenvectors, i.e. STools = UλToolsUT and

SMammals = UλMammalsUT . Moreover the sum of the corresponding eigenvalues

is always 1, i.e. λTools + λMammals = I. Thus, the eigenvector with the largest

eigenvalue for class ωTools has the smallest eigenvalue for class ωMammals, and

vice-versa.

6. Compute the spatial filter (SF) to be used in the transformation of the signal, as:

SF = UT · P (5)

7. Transform each trial EEG E into the desired specific components:

J = SF · E (6)

The matrix J represents the final output of the CSP algorithm. As is usually done in

the literature (Ramoser et al., 2000), we select the first and the last rows of this ma-

trix as the components that are most representative for the classes ωTools and ωMammals,
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respectively.6 This procedure can be interpreted as extracting the event-related spec-

tral activity (i.e. the relative event-related synchronisation) of two synchronous neural

structures which have been found to have an optimally differential response to the stim-

ulus categories of interest.

The final categorization step is based on a Support-Vector Machine (SVM) classi-

fier (Boser et al., 1992; Vapnik, 1998), a state-of-the-art machine learning technique

that has been widely adopted in recent years. Relative to other classifiers, it provides

high classification accuracy and very good generalization; involves few control param-

eters; is not computationally intensive; and has proven effective in classification tasks

where the number of training samples is limited (see Noble, 2006 for a non-technical

introduction). The SVM input for each trial consisted of two numbers, derived as such

from the pair of signal components produced by the CSP algorithm:

xp = log(var(Jp)) (7)

where Jp is the 1×T vector representing the p-th signal component of J. Taking the

variance of the vector produces a measure that is proportional to signal power, and the

log function transforms the data to approximate a normal distribution (Ramoser et al.,

2000). The resulting pair of measures represent modulations in spectral power which

are sensitive to mammal and tool stimuli respectively:

x = [log(var(J1)) , log(var(JM))] (8)

where J1 and JM represent the first and the last components of J , respectively. Features

in x were scaled to a range of -1 to +1 across all trials. The SVM implementation used

was LIBSVM (Chang and Lin, 2001).

6Preliminary analyses using more than one component per class did not provide substantive improvement
in classification accuracy. For example, over the seven individual analyses reported in section 4.2, taking
two components per class gave an average 1 percentage point improvement in classification accuracy, while
taking five components per class gave no improvement.
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4. Results

4.1. Time/frequency interval optimisation

As detailed in the previous section, a grid based region search was performed on

the time-range 0-500ms and the frequency range 0-50Hz, in steps of 33ms and 3.3Hz

respectively. In total just under 15 thousand time/frequency windows were considered

for each participant. For each window, the EEG signals were band-pass filtered, divided

into epochs of the relevant time interval, and decomposed with CSP to identify class

specific components of neural activity. The Bhattacharyya metric of class separability

was computed on the spectral power measures between the set of Mammal trials and

the set of Tool trials. This process was carried out separately for each of the seven

subject sessions. As mentioned in the previous section, the time/frequency cropping

parameters for each participant that yield the best separation between mammal and

tool epochs constitute an optimum, maximising the size of the effect between classes.

Figure 1 (right panel) shows the time/frequency space for the EEG data from a

single session (participant B). The value at each point on the graph is the mean Bhat-

tacharyya distance for all windows that included that portion of the time/frequency

space. As is apparent from the figure, the most informative interval runs from shortly

after stimulus onset to around 350ms, and the theta (4-8Hz) and lower alpha (8-10Hz)

bands are the most relevant frequency range.

[Insert Figure 1]

The optimal window selected according to the maximum separability in this case

was (100-370ms; 3-17Hz), indicated in black. For comparison, the next three near-

optimal solutions are indicated in white.

The left panel of Figure 1 shows the corresponding plot taking a mean over the

spaces of all seven participants. Here the time and frequency intervals are broadly simi-

lar, starting slightly later, and extending somewhat into the low beta band. The optimal

windows for each individual participant are shown in white and the mean optimal win-
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dows is shown in black: 95-360ms and 4.1-18.3Hz. Individual time/frequency spaces

for each participant are included in the supplementary materials (Figure S.3).

4.2. Individual Classification

FOR EACH PARTICIPANT, THE 64-CHANNEL EEG DATA WAS BAND-FILTERED

AND EPOCHED ACCORDING TO AN AVERAGE OPTIMUM WINDOW COMPUTED OVER

THE REMAINING SIX PARTICIPANTS. Using a 5-fold partition procedure, the 360 tri-

als were split into five non-overlapping evaluation sets of equal size (72 trials, evenly

split between each class). For each evaluation set, the remaining 4/5 of the data served

as the training set (288 trials). Accuracy was then computed by comparing the SVM

predictions of membership to the true category of the image presented in each evalua-

tion trial, over all five folds, on the basis of the spectral power measures extracted (the

distribution of features extracted for a typical participant are included in the supplemen-

tary materials as Figure S.1). Default SVM settings were used: a radius basis function

kernel with settings of 1/n for the gamma value (where n is the number of training data

points, 288) and 1 for the cost parameter C.7 As Figure 2 shows, classification accu-

racy over single trials was significant for all participants (p<0.01) ranging from 57%

to 80% (performance significantly above chance at α = 0.05 is indicated by a dotted

line), with a mean of 72% (p<0.001). Significance was calculated using a binomial test

(n=360, p=0.5), and validated with a bootstrapping simulation (based on 1000 random

permutations of category labels).8

[Insert Figure 2]

The CSP components extracted can be visualised by means of scalp-maps to give

an indication of the distribution of the neural sub-assemblies that are informative for

7Usually, optimisation of SVM parameters can lead to considerable increases in classification perfor-
mance. In our case, several tuning strategies were investigated, but did not improve results. We believe that
this is because CSP is a powerful supervised learning technique that largely succeeds in linearly separating
the training data, and so a ceiling is reached in cross-validation performance at the SVM.

8The distribution assumed by the binomial test had a mean and standard deviation over trials of 180 and
9.487 respectively. The permutation-based simulation yielded a mean and standard deviation of 179.9 and
9.58 trials.
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category. The precise distribution varied across participants, but a wide range of occip-

ital, parietal and frontal areas played a role. The scalp maps from participant C, shown

in Figure 3 (top panel), are typical, showing activation distributed over all these areas.

The mean activation maps over all participants are shown in the lower panel. Individual

maps for all participants are available in the supplementary materials (Figure S.3).

[Insert Figure 3]

4.3. Group Classification

As discussed above, there are some differences between participants in the optimal

time/frequency windows found, in the mammal and tool-specific spatial components

extracted, and in the final categorisation accuracy achieved. This raises the question of

to what extent category-specific neural activities are shared across participants. Cross-

participant generalisation in EEG work is complicated by many factors: the signal to

noise ratio at each electrode is affected by the impedance achieved on the contact to the

scalp, which is influenced by local differences in skin condition; the spatial location of

electrodes relative to underlying cortex will vary according to the size and shape of the

head; and as is also the case with other imaging technologies, there may be individual

differences in brain anatomy or functional localisation across participants. While Brain-

Computer-Interaction tasks have demonstrated that generalisation is possible for the

activity produced during motor planning and execution (see e.g. Curran and Stokes,

2003), it has not been established that activities associated with higher cognitive states

generalise similarly well across participants.

The group analysis was carried out in a similar way to the individual analyses, using

the same strategy for selecting an optimal time/frequency window. Since the signal to

noise ratio varies across channels and across participants, all signals were normalised

to z-score values (i.e. each channel from each participant was individually transformed

so that it had a mean value of 0 and a standard deviation of 1). As before, the data

was band-filtered and epoched, before being partitioned into evaluation and training
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sets. Here, a 7-fold partition procedure was used, where in each case the data from six

participants (2160 trials) was used for training and the data from the left-out participant

(360 trials) was used for evaluation. Accuracy was then computed by comparing the

SVM predictions of category membership to the category of the image presented in

each evaluation trial.

The results are illustrated in Figure 4. Classification accuracy was significant for

all participant sessions (p<0.01), ranging from 56% to 68%. The average accuracy was

61%. The components isolated for group classification (Figure 5) overlap considerably

with those for individual classification (Figure 3), but the information gained from

frontal areas is reduced, and that from occipital areas is increased.

[Insert Figures 4 and 5 here]

4.4. Discounting Nuisance Variables

An obvious question about these results is whether they represent a successful de-

tection of neural activity specific to semantic category, or they are rather driven by

some lower level confound such as word length, ease of naming, or image complex-

ity. Activity in the frequency bands identified here have been found to be modulated

by a wide variety of cognitive tasks in verbal, visual and spatial processing (see re-

views by Pfurtscheller and Lopes da Silva, 1999; and Kahana, 2006). Our stimuli were

chosen to be reasonably frequent, visually identifiable and easily nameable, while con-

stituting plausible categories that people use in everyday life and which are commonly

lexicalised in human languages. No attempt was made to balance the materials for the

many conceptual, visual and lexical confounds that have been raised in the literature, as

we did not consider it feasible to find a set of stimuli that were suitable on the concep-

tual, visual and lexical levels, while also having comparable distributions on the values

of all potential confounds. Instead, the trial-by-trial predictions made by the algorithm

allow the contribution of any confound to be evaluated systematically at the analysis

stage.
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An initial answer to the question of confounds is provided by the distribution over

the scalp of the informative signal components. On average the depictions of mam-

mals occupied a larger proportion of the screen display area and are more detailed, and

so one possible alternative explanation of the results would be that we are detecting

the additional perceptual processing that they demand. Cursory examination of the

individual-level scalp-maps (Figure S.3, supplementary materials) shows that the infor-

mative activity is predominantly outside of the occipital areas where visual processing

is focused, making this unlikely. But for the group analyses it remains a plausible

explanation.

A further test is to look for patterns of errors in the classification. If the same items

are repeatedly misclassified by the algorithm, it may be some confounding character-

istic of the stimulus that is responsible. For example, if the analysis had identified

components of neural activity that are sensitive to lexical length, and was using this

to guess category membership (on average the mammal words were somewhat shorter

than the tool words – see Table 1 below), then a mammal with a longer name (such as

ippopotamo ‘hippopotamus’) should be consistently grouped with the tools, and a tool

with a shorter name (e.g. sega ‘saw’) should be grouped with the mammals.

[Insert Table 1 here]

If on the other hand the classification errors are simply due to random noise, we

would expect classification of stimuli to be more reliable after amalgamating predic-

tions over multiple presentations. Here committee predictions are made by taking the

majority classification over several trials (e.g. if a single stimulus was classified as a

mammal on two presentations and as a tool on four presentations, the committee pre-

diction is a tool). Making committee predictions separately for each participant does

increase accuracy, represented by the grey bars on Figure 2. In all participants there

is a noticeable improvement in accuracy, and the mean rate rises to 80% (grey bar on

right). Similarly, taking the majority classification for each stimulus over all presen-
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tations to all participants raises classification accuracy to 98% (black bar on the far

right), indicating that no single confound can account for the overall behaviour of the

algorithm.

However, this does not exclude the possibility that some combination of confound-

ing factors is being exploited by the algorithm. To investigate this, a regression model

can be used to determine the relative contributions of a set of variables to the output of

interest. In this case the output (the dependent variable, which we are trying to explain)

is the committee category prediction for each stimulus, averaged over all presentations

to all participants. The possible input variables (independent variables) are the true

stimulus category, and a range of confounding variables related to the stimulus images,

the words they represent, and task performance.9

The lexical variables considered were word length in syllables, and lexical log fre-

quency calculated using a large web-collected corpus (Baroni et al., 2009). The pos-

sible visual confounds examined were image brightness, mean spatial frequency (a

measure of low-level detail), and visual complexity (calculated using GIF and JPEG

image compression – see Székely and Bates, 2000; Forsythe et al., 2008). Finally the

three metrics of participant performance included were naming consistency, reaction

time, and number of null reactions (i.e. how often a time-out was reached, because a

participant could not think of an appropriate word within three seconds). Table 1 lists

the variables, together with several measures of the degree of balance across the cate-

gories: the first column of numbers gives the probability that this variable is balanced

across the two groups of stimuli, using a t-test; the second and third columns give re-

spectively the rank correlation of each variable with the true category of the stimuli,

and the linear correlation to the committee prediction produced by the algorithm. The

9Conceptual variables were not available for the Italian words used in the study, but concreteness is not
expected to vary across the exclusively nominal object stimuli, and imagery should play no role in a picture
naming task. Familiarity may play a role, and is indirectly reflected in the model as it co-varies strongly with
lexical frequency (e.g. in the MRC Psycholinguistic Database, Wilson, 1988, there is a 0.74 rank correlation
between familiarity and frequency).
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correlations were performed against the category of tools, so positive correlations in-

dicate a larger value in the confound for tools, and a negative correlation indicates a

larger value in the confound for mammals (e.g. the tool words were longer, and the

mammal words were more frequent).

A linear regression model was then constructed using all these variables.10 All

variables were z-score normed, so that the weights assigned to them by the regression

model would be comparable. Care must be taken when selecting the inputs for such

a model, as closely correlated variables can make the model unstable. For this reason

image complexity was excluded, since it correlated very highly with image brightness

(r=0.92).11

The full model containing the true category value and all these possible confounds

explained a very high amount of the variance (r2=0.81) in the predictions made in

individual analyses. The relative contributions of each variable can be seen in Table

2. The first column shows that only two variables – the true stimulus category and

image brightness – reach significance in explaining the behaviour of the algorithm

in individual analyses. A reduced version of the model, where superfluous variables

are automatically removed step-wise to improve overall fit, settles on these same two

variables (figures in brackets).12 These weights suggest that category has over seven

times the explanatory power of any of the confounds.

A linear model to explain the group analysis gave similar results (second column

in Table 2). Despite a lower overall fit (r2=0.63), it again showed that category had

many times more explanatory power than any of the possible confounds, which in this

case were image detail (based on spatial frequencies) and word length (though this

variable’s contribution was not significant).

10Using the lm() function in R.
11The linear models described below were replicated using image complexity in place of image brightness,

and gave very similar results, with marginally lower measures of model fit.
12The step() function in R derives an optimal linear model by using the Akaike information criteria to

incrementally remove variables.
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[Insert Table 2 here]

Finally, manual variations on these models can be built to compare the variance

explained by subsets of variables. A model using all seven potential confounds but

excluding the category of the stimuli explains only 51% and 34% of variance (for

individual and group analyses respectively). Models using significant confounds only

(image brightness for the individual model; and image detail for the group model)

explained 51% and 15%. A model using the true category alone accounts for 80% and

61% of the variance respectively – more of the algorithm’s predictive behaviour than

any of the confounds, individually or in combination.

All this evidence indicates that the category of the stimuli provides the best expla-

nation for the behaviour of the algorithm. While the confounds can also model some

of the algorithm’s behaviour, this can be explained by their partial correlations with se-

mantic class. The comparison of models with (r2=0.81 and 0.63) and without (r2=0.80

and 0.61) confounds demonstrates that the information supplied by confounds is almost

entirely superfluous.

5. Discussion

This is the first work to report the decoding of semantic categories from neural activ-

ity using EEG data, and also to take advantage of single-trial analyses to systematically

exclude a range of low-level confounds as alternative explanations. Comparison with

similar work using imaging data (Haxby et al., 2001, who achieves 85-100% accuracy

on a larger number of categories) suggests that fMRI signals may be more information-

rich in this respect, but we hope that continuing work on improving these techniques

may close that gap. As EEG studies can be performed at much lower cost than fMRI,

they may be a more feasible methodology for larger-scale investigations of the lexicon.

We are now replicating these experiments with an expanded set of materials to establish

the precise nature of the semantic distinction being detected, and with MEG to see to

what extent it can improve individual and group-level prediction.
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The methods described in this paper show clear differences in the pattern of EEG

signals observed during the processing of superordinate categories. However, the

trained algorithm did not prove to be sensitive to conceptual relatedness within cate-

gories – for example that koala is more similar to kangaroo than either are to camel,

and that garden fork and shovel are more closely related than they are to chainsaw.

Ideally one could find correspondences between the semantic space described by this

technique (see Figure S.2 in the supplementary materials for a graphical representation)

and those derived from informants’ judgements of typicality or semantic similarity (e.g.

Morrow and Duffy, 2005; DeDeyne et al., 2008) or analogous measures of relatedness

derived from language corpora and lexica (e.g. Lund et al., 1995; Lin, 1998; Patward-

han et al., 2003), which are of particular interest to us – but none of several compar-

isons of this kind that we carried out yielded significant results. This indicates that

the discriminative classification techniques used are working as they are designed to,

optimising the class distinction while ignoring all other aspects of the data. We are

currently developing other data mining techniques that are better suited to extracting

intra-categorial structure also (see Murphy et al., 2009 for a preliminary report on this

work). Nevertheless, these trial-by-trial techniques make it possible for the first time to

systematically exclude suspected confound variables (without exhaustive balancing of

authentic materials, or the use of tailored fillers), and to potentially distinguish between

the various semantic interpretations that can be attached to the group analyses reported

in many neuroimaging and electrophysiological studies.

Currently we achieve highly significant classification for single participant data,

and while generalising across individuals of a single language group, but we do not yet

know if the neural patterns identified would generalise to other materials. Some pre-

liminary analyses were also carried out based on earlier smaller scale experiments that

used more heterogeneous materials (100 trials of mixed animals and mixed artefacts),

to test if cross-language decoding (training on data from Italian speakers and evaluat-
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ing on data from English speakers) and cross-modal decoding (training on data from

a silent image naming task and evaluating on data from a lexical visualisation task) is

possible. While encouraging, these results only approached significance, and need to

be replicated on a larger scale. In particular, we intend to use visual, rather than audi-

tory presentation of lexical stimuli, to make cross-trial synchronisation more reliable

(it is not straight-forward to determine at what point during each auditory word enough

information has been received to allow categorisation to proceed). Lexical stimuli will

also allow us to investigate more abstract categories than those that can be easily and

unambiguously represented with images. Finally, it should be noted that the analy-

sis presented here may represent either the process of categorisation, or the resultant

representations, or both – though further analysis of the time-course of categorisation

together with examination of later latencies may provide insights. Similarly with the

current experimental design we cannot be conclusive about what phases of the image

naming process (including object recognition and lexical retrieval) our algorithms take

advantage of.

In terms of the neural realisation of semantics, we have identified scalp locations,

time intervals and frequency bands that are especially informative about categorial dif-

ferences. There is still no well-established consensus on the functional interpretation

of variations in spectral power (see Pfurtscheller and Lopes da Silva, 1999; Kahana,

2006). The localised increases in spectral power seen here are conventionally inter-

preted as a reflection of a decrease in neural activity in some frequency bands (‘cortical

idling’, in the alpha-band≈8-12Hz), and a reflection of an increase in activity in others

(theta, 4-8Hz; gamma >20Hz), while the magnitude of the change in power is seen to

be modulated by task difficulty or complexity (Jensen et al., 2007). More specifically,

Pfurtscheller and Lopes da Silva (1999) describe upper alpha activity (10-12Hz) as be-

ing linked to sensory and semantic processing, particularly in parietal-occipital areas,

like those seen in this study. And Kahana (2006) report theta band activity (4-8Hz, also
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seen here) for verbal working memory tasks. The lowest frequencies (<4Hz) may also

reflect ERP components with a period of more than 250ms, such as N1/N170 effects.

Further, the latencies identified by our algorithms may seem rather early when

compared to some of the ERP literature: the signals seen by Kiefer (2001) and Paz-

Caballero et al. (2006) peak in separability after 300 ms, and any earlier differences

are interpreted as being due to perceptual processing. HOWEVER, THE TIME IN-

TERVAL WE IDENTIFY (≈100-350MS) IS MORE CONSISTENT WITH RECENT WORK

THAT SUGGESTS THAT AT LEAST A FIRST PASS, COARSE CATEGORISATION IS CAR-

RIED OUT MUCH EARLIER (SEE THORPE, 2009, FOR DISCUSSION): LIU ET AL.

(2009) DETECTED CATEGORY SPECIFIC DIFFERENCES IN SINGLE TRIALS AS EARLY

AS 100MS AFTER ONSET WITH INTERCRANIAL ELECTRODES, VISUAL INPUT CAN

REACH THE FRONTAL LOBE AS EARLY AS 40-65MS AFTER ONSET (KIRCHNER

ET AL., 2009), AND KIRCHNER AND THORPE (2006) FIND THAT PARTICIPANTS

CAN MAKE AN EYE-MOVEMENT AS EARLY AS 120MS AFTER ONSET IN A CATE-

GORY DETECTION TASK. And shorter latencies for the semantic processing of words

are well established: in a visual-world task Allopenna et al. (1998) show that eye-

movements that depend on interpretation can begin as early as 200ms after the audi-

tory onset of a word, while the effect of semantics during lexical processing becomes

apparent in EEG between 100 and 200ms (Pulvermüller, 2002, p.62).

The similarities to the time intervals (Rossion et al., 2003; Itier and Taylor, 2004;

Rousselet et al., 2004) and spectral frequencies (Rousselet et al., 2007) seen in the face-

processing literature are particularly striking.13 As discussed in the background section,

it is unlikely that these effects are exclusively due to perceptual processing (they are

seen when faces are compared to non-face stimuli that have been matched for low-level

visual properties; and are also found for non-human animate stimuli). So while we can-

not rule out that we are also detecting high-level visual categorisation processes, these

13We would like to thank the second reviewer for bringing these very relevant results to our attention.
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follow initial categorisation, and so are at a level of abstraction (e.g. having handles

vs having legs; being animate/inanimate) where visual and linguistic descriptions are

closely aligned. This conclusion stands, irrespective of one’s assumptions as to whether

the conceptual system has separate visual and linguistic modules or not. In this respect

it is important that the concepts we have used as stimuli are highly imageable, as the lin-

guistic or psychological features that are most salient (e.g. according to feature norms

such as McRae et al., 2005, or as might be yielded by corpus-based models of seman-

tics like Poesio and Almuhareb, 2008; Baroni et al., 2010), are predominantly ones that

are easily visualisable (colour, shape, size of ears, number of legs, etc).

The scalp locations at which these differences are maximal point to brain regions in

which the processing load is modulated by semantic category. It is difficult to draw pre-

cise anatomical conclusions on the basis of this data as there is no principled basis on

which to decide on the number of dipoles to expect in a source localisation analysis, nor

whether the point-sources such a model assumes are appropriate when interpreting dis-

tributed activations. But it is clear that semantic processing and the resulting represen-

tations are widely spread across the brain, in a fashion that is somewhat shared between

the participants that took part in the study. In particular, the extensive dorsal activations

seen can be interpreted an effect of motor planning induced by the visual processing of

manipulable objects (Mishkin and Ungerleider, 1982; Goodale and Milner, 1992), or

rather a reflection of conceptual representations proper, as have been suggested more

recently both in the literature on visual processing (Almeida et al., 2008) and lexical

comprehension (Pulvermüller, 2005). In the case of the second interpretation, this con-

stitutes further support for theories of neuronal networks of word meanings that arise

from our experience of the world and language (Spitzer, 1999; Tyler and Moss, 2001;

Barsalou, 2003).
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