Picture of person typing on laptop with programming code visible on the laptop screen

World class computing and information science research at Strathclyde...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of Open Access research papers by University of Strathclyde researchers, including by researchers from the Department of Computer & Information Sciences involved in mathematically structured programming, similarity and metric search, computer security, software systems, combinatronics and digital health.

The Department also includes the iSchool Research Group, which performs leading research into socio-technical phenomena and topics such as information retrieval and information seeking behaviour.

Explore

Controllability of buildings : a multi-input multi-output stability assessment method for buildings with slow acting heating systems

Counsell, John M. and Khalid, Yousaf A. and Brindley, Joseph (2011) Controllability of buildings : a multi-input multi-output stability assessment method for buildings with slow acting heating systems. Simulation Modelling Practice and Theory, 19 (4). pp. 1185-1200. ISSN 1569-190X

[img] Microsoft Word (Counsell_JM_-_strathprints_-_Controllability_of_buildings_-_A_multi-input_multi-output_stability_assessment..._heating_systems_25_Oct_2010.doc)
Counsell_JM_-_strathprints_-_Controllability_of_buildings_-_A_multi-input_multi-output_stability_assessment..._heating_systems_25_Oct_2010.doc - Preprint

Download (726kB)

Abstract

The paper describes a methodology to assess the controllability of a building and its servicing systems, such as heating, lighting and ventilation. The knowledge for these methods has been transferred from design processes and methods used in the design of aircraft flight control systems to establish a modelling and design process for assessing the controllability of buildings. The paper describes a holistic approach to the modelling of the nonlinear and linear dynamics of the integrated building and its systems. This model is used to analyse the controllability of the building using Nonlinear Inverse Dynamics controller design methods used in the aerospace and robotics industry. The results show that this design approach can help the architects in their decisions on which building design and services to use. Furthermore, the results demonstrate how the same method can assist the control systems designer in developing complex control systems especially for buildings designed with a Climate Adaptive Building (CAB) philosophy.