Picture of Open Access badges

Discover Open Access research at Strathprints

It's International Open Access Week, 24-30 October 2016. This year's theme is "Open in Action" and is all about taking meaningful steps towards opening up research and scholarship. The Strathprints institutional repository is a digital archive of University of Strathclyde research outputs. Explore recent world leading Open Access research content by University of Strathclyde researchers and see how Strathclyde researchers are committing to putting "Open in Action".


Image: h_pampel, CC-BY

Jamming and unjamming of concentrated colloidal dispersions in channel flow

Campbell, A.I. and Haw, M.D. (2010) Jamming and unjamming of concentrated colloidal dispersions in channel flow. Soft Matter, 6 (19). pp. 4688-4693. ISSN 1744-683X

c0sm00110d.pdf - Final Published Version

Download (289kB) | Preview


We investigated the pressure driven flow of concentrated colloidal dispersions in a converging channel geometry. Optical microscopy and image analysis were used to track tracer particles mixed into dispersions of sterically stabilized poly(methyl methacrylate) (PMMA) spheres. The dispersions were drawn into a round \unit[0.5]{mm} capillary at one of two pump speeds ($\equiv$ applied pressure): $v_1=\unit[0.245]{ml\,\, min^{-1}}$ and $v_2=\unit[0.612]{ml\,\, min^{-1}}$. We observed that the dispersions at particle volume fractions $\phi\leqslant0.50$ followed Hagen-Poiseuille flow for a simple fluid; i.e. the mean flow rate $\langle V\rangle$ is approximately proportional to pressure drop (pump speed) and inversely proportional viscosity $\eta$. Above this concentration ($\phi\geqslant0.505$), the dispersions exhibit granular-like jamming behavior with $\langle V\rangle$ becoming independent of the pressure drop. However, at the highest applied pressure ($v_2$), the dispersions are able to unjam and switch from granular-like behaviour back to a simple hard-sphere liquid like system, due to the formation of rotating vortices in the spatial flow pattern. This mechanism is consistent with computer simulations of granular systems and supports for example proposed explanations of anomalously low friction in earthquake faults.