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Abstract: The synthesis of three novel thiophene-based conjugated molecules (1-3) is presented. We 

report the electronic and redox properties of these compounds along with the corresponding 

electrochemically prepared polymers. The structures of compounds 1 and 2 have been confirmed by 

single-crystal X-ray diffraction studies. Non-covalent S…O interactions in 1 act to hold the molecule in a 

planar conformation and this is in stark contrast to the twisted nature of the 3,4-ethylenedithiothiophene 

(EDTT) analogue. The degree of planarity within the molecules dictates the effective conjugation length 
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within the materials and also the packing of the molecules in the solid state. CGL-TOF studies give hole 

mobilities up to 4 × 10-5 cm2 V-1 s-1 for compound 1 and 1.5 × 10-5 cm2 V-1 s-1 for 2. 

Introduction 

Since the discovery by Shirakawa and co-workers that polyacetylene could be electrically conducting 

in its doped state,1 conjugated polymers and small molecules have been widely investigated for use as 

semiconductors in organic electronic devices.2-5 They have proved useful in applications including 

sensors,6-9 electrochromics,10-13 organic light-emitting diodes,14-17 photovoltaics18-21 and field effect 

transistors.3, 4, 22 These organic materials are attractive alternatives to their inorganic counterparts such 

as amorphous silicon due to cost-effective processability of the materials through solution deposition 

methods such as inkjet printing, spin coating and screen printing.3, 23, 24 Such materials will be useful in 

producing large-area electronics onto mechanically flexible substrates.25, 26 Some thiophene-based 

polymers have shown charge carrier mobilities ranging from 0.1 to 1 cm2 V-1 s-1,27 values that are 

comparable to the benchmark standard of amorphous silicon.28 Within this group of materials, 

thienothiophene-containing polymers have demonstrated some of the highest charge carrier mobilities.29 

The specific values are dependent on a number of factors, including the physical architecture of the 

device,30 choice of source-drain electrodes and choice of dielectric material.31 Charge carrier mobilities 

are also closely linked to the supramolecular arrangement of a material in the solid state.27 It is 

important to align the semiconductor in such a way as to maximize charge transport between the source 

and drain electrodes through long-range π-π interactions.32  

Recently, Frère et al reported oligomers containing an EDOT-thienothiophene motif. It was postulated 

that the oligomers presented a planar conformation due to the combination of rigid components and 

non-covalent effects.33 In this paper, the synthesis and characterization of three novel thiophene-based 

molecules are reported. Compounds 1-3 have been designed such that non-covalent intramolecular 

interactions and their influence on the supramolecular structure of the molecules could be determined. 

Polymers of 1-3 were prepared electrochemically and their properties have been examined using cyclic 
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voltammetry, UV-Vis spectroscopy and spectroelectrochemistry. Compound 1 was designed to include 

a fused alkyl-substituted thienothiophene core unit flanked by two EDOT units. For PEDOT and 

EDOT-containing copolymers, non-covalent S…O interactions act to enforce planarity, thus increasing 

the extent of π orbital overlap and, in turn, decreasing the HOMO-LUMO gap relative to a 

conformationally free equivalent. In 2, the EDOT units have been replaced with 3,4-

ethylenedithiothiophene (EDTT), in which the 3,4 bridge positions are occupied by sulfur atoms instead 

of oxygen. It has been shown that S…S interactions are more sterically demanding than S…O contacts;34, 

35 thus, it was predicted that the molecule of compound 2 would be less planar than 1. Such a 

configuration would affect the extent of π conjugation through the system and, as a result, the HOMO – 

LUMO energies. Compound 3 has retained the EDOT units, but the central thienothiophene has been 

replaced by a bithiophene unit. Compound 3 is expected to exhibit the same S…O interactions between 

EDOT and thiophene units but the molecule may not display the same planarity that is achieved by the 

presence of the fused thienothiophene in 1. Indeed, crystallographic and electrochemical analysis 

confirm that 1 is held planar and that 2 is highly twisted, thus affecting the HOMO-LUMO energy gaps 

of the system. Electrochemical analysis of 3 indicates that a longer effective conjugation through the 

monomer unit results in a lower HOMO-LUMO energy gap than either compound 1 or 2. 

 

Results and Discussion 

Scheme 1 
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Reagents and conditions: i, ii, iii) Pd(PPh3)4, DMF, µW, 160 °C, 2 h. 

Synthesis. The synthetic route to compounds 1-3 is summarized in Scheme 1. 2,5-Dibromo-3,6-

dihexadecylthieno[3,2-b]thiophene 4 was prepared following a previously reported synthetic route.29, 36 

Microwave-assisted Stille coupling of 4 with 2-trimethylstannyl derivatives of EDOT and EDTT gave 

compounds 1 and 2, in yields of 72% and 61% respectively. Dibromo-4,4'-dihexadecyl-2,2'-bithiophene 

5 37 was also coupled with 2-trimethylstannyl EDOT to give compound 3 in 63% yield. 

Thermogravimetric analyses of compounds 1-3 showed that the materials begin to decompose in the 

range 350 – 370°C with the EDOT derivative being the least stable and the EDTT analogue the most 

resistant to higher temperatures. Differential scanning calorimetry revealed sharp melting points, but no 

phase transitions for any of the series. 
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Crystallography. Figure 1 shows the centrosymmetric molecule of compound 1, in which the 

hydrogen atoms have been omitted for clarity. The EDOT-thienothiophene core unit is essentially planar 

(maximum deviation from planarity, measured by dihedral angles between planar segments, is 4.95°), 

and the two hexadecyl chains are angled at 40° relative to the plane of the thienothiophene core. The 

conjugated chain is held in a planar conformation as a result of non-covalent S…O interactions between 

the thienothiophene core and the two EDOT units. The interatomic S…O distances were measured to be 

2.87 Ǻ, which is significantly shorter than the sum of the van der Waals radii for sulfur and oxygen (S + 

O = 3.32 Ǻ). 
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Figure 1. Molecular Structure of compound 1 
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Figure 2. Packing diagrams of 1 viewed along the b axis (left) and showing alignment of the conjugated 

units (right). 

 

Figure 2 shows the packing structure of compound 1. The interplanar π – π distances were measured 

to be 3.46 Ǻ, which represent significant π – π interactions. The alkyl side chains interdigitate and the 

molecule shows good close packing within the 2-D sheet (Figure 2 left) The alkyl side chain interactions 

are known to be important in facilitating the growth of ordered crystalline microstructures.38 The side-

chain attachment density of a polymer is known to be related to the chemical structure of the monomer, 

therefore it is an intrinsic property of the polymer and is independent of processing history, MW, or side-

chain length.37 Although the structure of 1 provides only some indication of how the conjugated chains 

may align in the polymer, the likelihood of the local geometry of the structure (EDOT-thienothiophene 

segments) persisting in the polymer is considered to be high. Electrochemistry and absorption studies 
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support this assumption (vide infra). 

Figure 3 shows the molecular structure of compound 2 in the crystalline state. In contrast to the planar 

structure of 1, the molecular backbone of 2 is highly twisted. The dihedral angle between the 

thienothiophene core and the flanking EDTT units is close to being perfectly orthogonal (86.84°). The 

main cause of this is attributed to the unfavorable S…S interactions, which are known to twist the main 

chain in PEDTT.39 This twisted nature breaks conjugation within the molecule and thus raises the 

ionization potential. The alkyl chains in 2 are orientated almost at right angles to the thienothiophene 

core (88.75°). Figure 4 shows a packing diagram for compound 2. No significant interdigitation or 

close-range interactions are apparent in the solid-state structure. 

 

Figure 3. Molecular structure of compound 2 
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Figure 4. Packing diagram of 2 

 

Electrochemistry and UV-Vis spectroscopy. Cyclic voltammetry experiments were performed 

within DCM solutions of the monomers in 0.1 mmol concentration with a silver wire as pseudo 

reference electrode and 0.1 M concentration of tetrabutylammonium hexafluorophosphate (TBAPF6) as 

the supporting electrolyte. A summary of the redox events for compounds 1-3 is shown in Table 1 and 

the cyclic voltammograms are represented in Figure 5. The EDOT-containing compound 1 exhibits an 

irreversible oxidation peak at +0.46 V and a second oxidation at +0.95 V. Compound 3 also shows 

irreversible oxidations at +0.37 V and +0.79 V. The presence of EDTT in 2 causes the oxidation to 
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become quasi-reversible and shifted to a higher potential of +0.71/0.51 V. All three compounds have the 

same reduction peak apparent at -1.97 V. The absorption spectra for the three materials are depicted in 

Figure 6; they show that the maxima corresponding to the π-π* transitions vary significantly and are in 

the range 395 – 452 nm. Derivative 3 has a greater effective conjugation length and thus a lower 

HOMO- LUMO gap than 1. The EDTT units in 2 have lowered the HOMO level relative to 1 by 

introducing a non-planar conformation in the system, thus widening the HOMO-LUMO gap. The fused 

core of 1 and 2 has reduced the effective conjugation length of the molecules and as such, lowered the 

HOMO levels slightly (0.24 eV). The thieno[3,2-b]thiophene unit has a higher aromatic stabilization 

energy than a single thiophene unit40 and this serves to lower the HOMO level and thus widen the 

HOMO-LUMO gap. There is some discrepancy between the HOMO-LUMO gap calculated optically 

and that determined electrochemically (ca. 0.5 – 0.8 eV). The reason for this is that the EDOT and 

EDTT units contribute significantly to the electrochemically calculated HOMO-LUMO gap as they 

govern the ionization potential of the monomer. The same cannot be said for the optically calculated 

HOMO-LUMO gap, which is also dependent on the effective conjugation length of the monomer.41 

 

Table 1. Optical and electrochemical properties of monomers 1-3 

 E1ox/V E2ox/V E1red/V HOMO 

(eV) 

LUMO 

(eV) 

Electrochemical 

Eg (eV) 

λmax 

(nm) 

Optical Eg (eV) 

1 +0.46 +0.95 -1.98 -5.18 -2.97 2.21 411 3.01 

2 +0.71/0.51 +1.00 -1.97 -5.42 -2.97 2.45 395 3.14 

3 +0.37 +0.79 -1.97 -5.08 -2.96 2.12 452 2.74 

a The HOMO and LUMO values shown were calculated from the peak maxima of the respective 
redox wave. All values have been referenced to the HOMO of ferrocene which is known to be -4.8 eV. b 

The optical HOMO-LUMO gap for each compound was calculated from the onset of the longest 
wavelength peak 
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Figure 5. Cyclic voltammograms of compounds 1-3 in DCM solution (carbon working electrode, silver 

wire pseudo-reference, TBAPF6 as the supporting electrolyte (0.1 M), substrate concentration 10-4 M, 

scan rate 100 mV/s). The data are referenced to the Fc/Fc+ redox couple. 
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Figure 6. UV-Vis absorption spectra of compounds 1-3 in dichloromethane solution. 

Polymers of compounds 1, 2 and 3 were grown onto a carbon electrode by repetitive oxidative cycling 

over the first oxidation wave. Table 2 shows a summary of the redox events associated with polymers 1-

3. The voltammogram of poly(1) displays an oxidation peak at E1ox = -0.33 V and a second, reversible 

oxidation is present at E2ox= +0.31/+0.26 V. Poly(2) show a quasi-reversible oxidation wave at E1ox = 

+0.64/0.52 V and a second irreversible wave at E2ox = +0.74 V. The band gap calculated for poly(2) is 

very similar to that of 2 in its monomer form, indicative of the twisted nature of the polymer chain 

preventing extended conjugation though the system. The voltammogram of poly(3) show an irreversible 

oxidation at E1ox = -0.04 V and a second peak is apparent at E2ox = +0.32/+0.25 V. All three polymer 

systems show a reduction wave present in the region of -2.0 to -2.1 V. It is unusual that the reduction 
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onsets for the polymers are more negative than the monomer values, but the differences are small and 

within experimental error. Therefore, we assume that the LUMO remains largely unchanged on 

polymerization of compounds 1-3. 

In the case of poly(1) and poly(3), there is a large shift in the HOMO energies of the polymer 

compared to the monomers due to increased conjugation. Poly(1) has a band gap of 1.53 eV, the lowest 

of the three systems (see Table 2). This is because the polymer is held planar by non-covalent S…O 

interactions, causing the conjugation length of the molecule to be larger than either of the other systems. 

Poly(3) has a bithiophene central unit which can allow rotation around the 5,5’- linkage. This rotation 

can result in a deviation from planarity and subsequently42 the ionization potential of poly(3) is higher 

than that of poly(1) and the band gap is also greater. The band gap exhibited by poly(2) is wider than 

those of both of its analogues. This is due to non-planarity in the polymer resulting from the EDTT units 

in the polymer chain, which are clearly seen to twist in the structure of compound 2. 

 

Table 2 Electrochemical properties of polymers 1-3 

 E1ox/ V E2ox/ V E1red/ V HOMO / eV LUMO / eV a Eg eV 

Poly(1) -0.33 +0.31/+0.26 -2.02 -4.24 -2.71 1.53 

Poly(2) +0.64/0.52 +0.74 -2.05 -5.39 -2.9 2.49 

Poly(3) -0.04 +0.32/+0.25 -2.1 -4.66 -2.72 1.94 

a The HOMO and LUMO values shown were calculated from the peak maxima of the respective 
oxidation/reduction waves. All values have been referenced to the HOMO of ferrocene which is known 
to be -4.8 eV. 
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Figure 7. Cyclic voltammograms of poly(1), poly(2) and poly(3) as thin films deposited on a glassy 

carbon working electrode using a silver wire pseudo-reference electrode, Pt wire counter electrode and 

TBAPF6 as the supporting electrolyte (0.1 M) in dichloromethane at a scan rate of 100 mV s-1. The data 

are all referenced to the Fc/Fc+ redox couple. 

 

Spectroelectrochemistry. Polymers of 1 and 3 were grown onto indium tin oxide (ITO) coated glass 

by repetitive oxidative cycling. Growth of poly(2) was unsuccessful on this type of electrode due to 

poor adhesion of the polymer film on the substrate. Spectroelectrochemical measurements were 

recorded from 0.1 M solutions of TBAPF6 in acetonitrile. Both polymer films were dedoped by 

repetitive cycling over a range in which the polymer shows no electroactivity (i.e. between the first 

oxidation and reduction waves). The optical band gaps for poly(1) and poly(3), calculated from the 
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onset of the longest wavelength absorption peaks, were found to be 1.74 and 1.84 eV, respectively. The 

UV-Vis spectra of the polymer-coated slides were measured as the potential applied to the samples was 

increased in 100 mV increments over the range -700 mV to +2000 mV (see Figures 8 and 9). Poly(1) 

shows a decrease in the π-π* absorption band caused by disruption to the conjugated chain through 

oxidation, and a new band emerges between 600 – 1000 nm. The latter is most intense at +500 mV and 

is attributed to the formation of polarons in the polymer chain. The polaron absorption tails off at ca. 

+800 mV and a second band appears in the same region after 1500 mV suggesting the formation of 

bipolarons along the polymer chain. In contrast to the spectroelectrochemistry of PEDOT,34 the polaron 

band for poly(1) is blue-shifted and the second transition for the latter is absent in PEDOT. In poly(3), 

the π-π* absorption band decreases in a similar fashion to poly(1). A new band due to polaron formation 

appears in the region 600 – 1000 nm and it reaches a maximum by +300 mV. This polaron band begins 

to diminish after +600 mV and no further transitions are apparent. The polymer film appears to detach 

from the ITO electrode as higher potentials are approached. The optical transparency of the polymers in 

their doped states (i.e. the almost complete disappearance of the π-π* bands) marks these materials as 

promising candidates for electrochromic devices.10 
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Figure 8. Spectroelectrochemical plot of poly(1) film coated on ITO working electrode, with platinum 

gauze counter electrode and silver wire reference. The film was measured over the potential range –0.7 

V to +2.0 V in a DCM solution containing 0.1 M TBAPF6 as supporting electrolyte. 

 

 

Figure 9. Spectroelectrochemical plot of poly(3) film coated on ITO working electrode, with platinum 

gauze counter electrode and silver wire reference. The film was measured over the potential range –0.4 

V to +1.8 V in a DCM solution containing 0.1 M TBAPF6 as supporting electrolyte. 

 

 

Time of flight measurements. Since the monomers studied in this work exhibited interesting packing 

in the crystalline state, we investigated the charge transport properties of films of compounds 1 and 2 by 

the charge generation layer time of flight (CGL-TOF) method. For these measurements, solutions of 

monomers were made to concentrations of 40 mg ml-1 in chlorobenzene. Films were spin-coated onto an 

16

 



ITO substrate at speeds of 800-1000 rpm to obtain films around 100-200 nm thick. The samples were 

then transferred to an evaporator where, under high vacuum, a 10 nm layer of the perylene dye 

(Lumogen Red) followed by 100 nm of aluminum was deposited through a shadow mask to define the 

active area of approximately 6 mm2. Testing was undertaken by exciting the charge generation layer 

through the ITO and monomer layer. Charge carriers were generated within the perylene layer by 

excitation from a 500 ps pulse of a dye laser at a wavelength of 580 nm, which is the peak of the 

absorption spectrum of Lumogen Red. At this excitation wavelength the monomers are completely 

transparent (see Figure 6). The highest occupied molecular orbital of the Lumogen Red was estimated 

from cyclic voltammetry measurements to be 6.2 eV from the vacuum level, enabling hole injection into 

the monomer layer. The packet of charge carriers was then swept through the device under an applied 

field, and the transit time (ttr) measured using a digital storage oscilloscope. The aluminum electrode 

was biased positively and the photocurrent signal detected from the ITO (see Figure 10). The applied 

bias led to the electrons photogenerated in the perylene dye layer being removed from the device at the 

aluminum electrode and holes being injected into the monomer from the perylene dye and consequently 

swept across the device to be collected at the ITO electrode. Thus the measured photocurrent transients 

are hole currents. Hole mobilities, μ, were deduced from the transit times, ttr, via the relation 

, where d is the film thickness and V the applied voltage. The sample was mounted in a 

vacuum cryostat at room temperature. The RC time constant of the measurement circuit was always 

selected to be ≤ 20 ttr. The total charge injected into the film was kept around 2-3% CV in all cases, 

where C is the capacitance of the device and V the applied voltage. 

trVtd /2=μ
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Figure 10. CGL-TOF schematic set-up for measurements on compounds 1 and 2. 

 

 

Figure 11 shows the hole photocurrent transient on a linear and log-log scales for a film of 

compound 1 at room temperature for an applied electric field E = 5.1 × 105 V cm-1. The absence of a 

clear plateau in the photocurrent transient on a linear scale is indicative of highly dispersive charge 

transport behavior. In order to estimate the transit time (ttr) a log-log plot was necessary, which allowed 

measurement of the transit time from the change of slope of the photocurrent transient, ttr = 0.95 μs. The 

transit time corresponds to a mobility of 3.5 × 10-5 cm2 V-1 s-1. 
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Figure 11. Hole photocurrent transient on linear (top) and log-log scale (bottom) for a film of compound 
1, at room temperature for an applied electric field E = 5.1 × 105 V cm-1. 

 

 

Figure 12 shows the hole photocurrent transient on linear and log-log scales for a film of 

compound 2 at room temperature for an applied electric field E = 5.1 × 105 V cm-1. Again the absence 

of a clear plateau in the photocurrent transient in linear scale is indicative of highly dispersive charge 

19

 



transport behavior. In order to estimate the transit time (ttr) a log-log plot was necessary, which allowed 

measurement of the transit time from the change of slope of the photocurrent transient, ttr = 2.3 μs. The 

transit time corresponds to a mobility of 1.4 × 10-6 cm2 V-1 s-1. 
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Figure 12. Hole photocurrent transient on linear (top) and log-log scale (bottom) for a film of compound 
2 at room temperature for an applied electric field E = 5.1 × 105 V cm-1. 

Our measurements give the hole mobility in the direction perpendicular to the substrate, and we 

have studied its field dependence, as shown in Figure 13. As the electric field is increased from 2 × 105 
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to 8 × 105 V cm-1, the hole mobility increases from 2 × 10-5 to 4 × 10-5 cm2 V-1 s-1 for 1 and from 6.3 × 

10-6 to 1.5 × 10-5 cm2 V-1 s-1 for compound 2. The difference in conformation between compounds 1 and 

2 in solution state is indicated by the corresponding values for λmax in Figure 6. Figure 14 shows the 

absorption spectra for 1 and 2 in the thin-film state, using the same conditions for processing as those 

used for the CGL-TOF experiments. The difference in absorption maxima is even greater in the solid 

state, with the onset of the longest wavelength absorption in 2 being ca. 90 nm hypsochromically shifted 

compared to that of compound 1. In general, it should be expected that twisting the arrangement of aryl 

rings in a conjugated chain will lead to a lowering in mobility due to a decrease in π-orbital overlap. The 

increased mobility seen in compound 1 compared to monomer 2 is commensurate with the non-planar 

conformation of the latter in the thin-film state.  

 

Figure 13. Room temperature mobility vs electric field for the three films investigated. 
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Figure14. Absorption spectra of thin films of compounds 1 and 2.  

 

 

Summary. Three new monomers have been synthesized and their corresponding polymers have been 

grown electrochemically. Where possible, they have been characterized by absorption spectroscopy, 

cyclic voltammetry and UV-Vis spectroelectrochemistry. The X-ray crystal structure of compound 1 

shows strong non covalent S…O interactions and side-chain interdigitation. The interplanar π-π distance 

is too large to expect significant interactions between molecular planes. Poly(1) has the lowest band gap 

of the three polymers measured and this is attributed to a rigid, planar structure. Compound 2 is severely 

twisted between the EDTT and thienothiophene units due to unfavorable S…S interactions and this 

affects the properties of the system by widening the HOMO-LUMO gap and lowering the HOMO 

energy level. Poly(2) has a band gap almost the same as the HOMO-LUMO gap measured in its 

monomer form, indicating that the local conformation around the thienothiophene-EDTT segment 

remains the same as in the monomer and that the EDTT-EDTT repeat units in the polymer are also 

significantly twisted, leading to very short effective conjugation no greater than the monomer (3). 
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Compound 3 has the smallest HOMO-LUMO gap of the monomers due to it having the greatest 

effective conjugation length. However, the corresponding polymer can rotate around the 5,5’-

bithiophene linkage, thereby limiting the conjugation length, and therefore its band gap is not as low as 

may be expected. CGL-TOF measurements show that compound 1 has a higher mobility than 2 and this 

is expected for a more planar molecule with superior π-orbital overlap in the bulk solid. 

 

Experimental. 

General. 1H and 13C NMR spectra were recorded from deuterated chloroform (CDCl3) on a BRUKER 

DRX instrument at 500 MHz unless otherwise stated; chemical shifts are given in ppm and J values in 

Hz. Melting points were measured using a Stuart Scientific SMP1 Melting Point apparatus and are 

uncorrected. Absorption spectra were measured on a Unicam UV 300 spectrophotometer. Cyclic 

voltammetry and spectroelectrochemical measurements were performed using a CH Instruments 660A 

Electrochemical Workstation with iR compensation. Solvents used for electrochemical experiments 

were DCM and MeCN and were degassed prior to measurement using argon. Where relevant, the 

solvent contained the analyte molecule in concentrations of ca. 10-3 M, together with TBAPF6 (0.1 M) 

as the supporting electrolyte. For all reactions, the organic extracts were combined, dried over MgSO4 

and the solvents were removed using a rotary evaporator (vacuum supplied by low vacuum pump) and, 

where necessary, a high vacuum pump was used to remove residual solvent. All distillations were 

performed on a Kugelrohr Z24 with high vacuum pump; where reported, bp values and vacuum 

readings were measured at the time of the experiment. 3-Bromothiophene was supplied by Aldrich and 

5,5'-dibromo-4,4'-dihexadecyl-2,2'-bithiophene was supplied by Merck chemicals. 

 

5,5'-(3,6-Dihexadecylthieno[3,2-b]thiophene-2,5-diyl)bis(2,3-dihydrothieno[3,4-b][1,4]dioxine) 1. 

2,5-Dibromo-3,6-dihexadecylthieno[3,2-b]thiophene 12 (300 mg, 0.4 mmol), (2,3-dihydrothieno[3,4-

b][1,4]dioxin-5-yl)trimethylstannane (270 mg, 8.85 mmol) and Pd(PPh3)4 (50mg, 0.1 eq) were added to 
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a dry microwave vial (2 – 5 ml type) and the vial was purged with dry nitrogen after which, DMF (3 

mL) was added. The reaction mixture was heated in the microwave at 160°C for 2 h. The reaction 

mixture was then poured into chloroform (100 mL) and washed with 2 M HCl solution (2 × 100 mL) 

and water (2 × 100 mL). The organic extracts were combined and dried over MgSO4. The crude product 

was purified by column chromatography on silica. DCM/hexane (1:2) eluted 1 as a yellow solid (0.25 g, 

72%). mp 113 °C. δH 0.89 (6H, t, J 7.0, 2 × CH3), 1.26 (52H, m, 26 × CH2), 1.73 (4H, m, 2 × CH2), 2.79 

(4H t, J 7.7, 2 × ArCH2), 4.27 (8H, m, 4 × CH2), 6.40 (2H, s, 5-H). δC (500 MHz, CDCl3) 14.1, 22.7, 

28.9, 29.3, 29.6, 31.9, 64.5, 64.8, 99.4, 110.8, 127.8, 133.4, 138.5, 139.1, 141.5. Anal. Calcd for 

C50H76S4O4 C, 69.07; H, 8.81; S, 14.75% found; C, 69.08; H, 8.85; S, 14.85%. MS: m/z, MALDI, M+ 

868 (100%). 

 

 

5,5'-(3,6-Dihexadecylthieno[3,2-b]thiophene-2,5-diyl)bis(2,3-dihydrothieno[3,4-b][1,4]dithiine) 

2.  

2,5-Dibromo-3,6-dihexadecylthieno[3,2-b]thiophene 12 (300 mg, 0.4 mmol), (2,3-dihydrothieno[3,4-

b][1,4]dithiin-5-yl)trimethylstannane (300 mg, 0.89 mmol) and Pd(PPh3)4 (50mg, 0.1 eq) were added to 

a dry microwave vial (2 – 5 mL type) and the vial was purged with dry nitrogen, after which DMF (3 

mL) was added. The reaction mixture was heated in the microwave at 160°C for 2 h. The reaction 

mixture was then poured into chloroform (100 mL) and washed with 2 M HCl solution (2 × 100 mL) 

and water (2 × 100 mL). The organic extracts were combined and dried over MgSO4. The crude product 

was purified by column chromatography on silica. DCM/hexane (1:3) eluted 2 as a waxy pale yellow 

solid (0.228 g, 61%). mp 73-74 °C. δH 0.88 (6H, t, J 6.9, 2 × CH3), 1.25 (52H, m, 26 × CH2), 1.70 (4H, 

m, 2 × CH2), 2.67 (4H, t, J 7.9, 2 × CH2), 3.23 (8H, s, 4 × CH2), 7.06 (2H, s, 5-H). δC 14.12, 22.70, 

27.41, 27.98, 28.70, 29.30, 29.37, 29.54, 29.71, 31.93, 119.14, 125.47, 126.12, 126.97, 127.89, 135.70, 

139.53. MS: m/z, MALDI, M+ 932.54 (100%). 
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5,5'-(4,4'-Dihexadecyl-2,2'-bithiophene-5,5'-diyl)bis(2,3-dihydrothieno[3,4-b][1,4]dioxine) 3. 5,5'-

Dibromo-4,4'-dihexadecyl-2,2'-bithiophene (300 mg, 3.88 mmol), (2,3-dihydrothieno[3,4-b][1,4]dioxin-

5-yl)trimethylstannane (260 mg, 8.54 mmol) and Pd(PPh3)4 (50mg, 0.1 eq) were added to a dry biotage 

microwave vial (2 – 5 mL type) and the vial was purged with dry nitrogen after which, DMF (3 mL) 

was added. The reaction mixture was heated in the microwave at 160°C for 2 h. The reaction mixture 

was then poured into chloroform (100 mL) and washed with 2 M HCl solution (2 × 100 mL) and water 

(2 × 100 mL). The organic extracts were combined and dried over MgSO4. The crude product was 

purified by column chromatography on silica. DCM/hexane (1:3) eluted 3 as a yellow solid (219 mg, 

63%). mp 93 – 94 °C. δH 0.88 (6H, t, J 6.9, 2 × CH3), 1.26 (52H, m, 26 × CH2), 1.63 (4H, m, 2 × CH2), 

2.67 (4H, t, J 7.9, 2 × CH2), 4.28 (8H, m, 4 × CH2), 6.37 (2H, s, 5-H), 6.98 (2H, s, Ar CH). δC 14.12, 

22.70, 29.37, 29.49, 29.58, 29.62, 29.70, 64.51, 64.88, 98.84, 110.46, 125.56, 126.19, 136.09, 138.12, 

141.43, 141.49. MALDI, M+ 894.60 (100%). 

 

X-ray Crystallography.  Single crystals of compounds 1 and 2 were obtained from the slow 

evaporation of DCM-hexane solutions.  Those of 2 were examined on a Bruker-Nonius APEX2 

diffractometer with rotating-anode Mo-Kα radiation (λ = 0.71073 Å), using standard procedures and 

software.  Those of 1 were of rather poorer quality, very thin, and weakly diffracting, requiring the use 

of synchrotron radiation (λ = 0.6941 Å), and giving a lower-precision result; the basic features of the 

structure are, however, unambiguous.  Full details are available in the Supporting Information. 
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