Picture of wind turbine against blue sky

Open Access research with a real impact...

The Strathprints institutional repository is a digital archive of University of Strathclyde research outputs.

The Energy Systems Research Unit (ESRU) within Strathclyde's Department of Mechanical and Aerospace Engineering is producing Open Access research that can help society deploy and optimise renewable energy systems, such as wind turbine technology.

Explore wind turbine research in Strathprints

Explore all of Strathclyde's Open Access research content

The interaction of chromium (VI) with macrophages : Depletion of glutathione and inhibition of glutathione reductase

Lalaouni, A. and Henderson, C.J. and Kupper, C. and Grant, M.H. (2007) The interaction of chromium (VI) with macrophages : Depletion of glutathione and inhibition of glutathione reductase. Toxicology, 236 (1-2). pp. 76-81. ISSN 0300-483X

Full text not available in this repository. (Request a copy from the Strathclyde author)

Abstract

There are reports of alterations in the number and functions of the cells of the immune system in patients with metal-on-metal (MOM) orthopaedic implants. These effects have been correlated with elevated chromium levels in the patients' blood. We have investigated the interactions of clinically relevant concentrations of Cr VI with macrophages in vitro, and the mechanisms responsible for its toxicity. Cr VI causes a concentration dependent decrease in macrophage viability above 1 microM as measured by the MTT and Neutral Red assays. This falls well within the range of circulating chromium serum concentrations measured in patients with MOM. Intracellular reduced glutathione (GSH) levels fall as a result, and most of the loss (86%) is accounted for by oxidation to the dimer, GSSG. Prior depletion of GSH does not sensitise the cells to Cr VI toxicity, implying that it is not involved in protecting the cells against the effects of Cr VI. During the metabolism of Cr VI, glutathione reductase activity is inhibited. In contrast, the activities of catalase and superoxide dismutase are not significantly altered. Prior inhibition of glutathione reductase activity protects against the toxicity of Cr VI to a significant extent, suggesting that it reduces Cr VI to a toxic metabolite.