Picture of a sphere with binary code

Making Strathclyde research discoverable to the world...

The Strathprints institutional repository is a digital archive of University of Strathclyde research outputs. It exposes Strathclyde's world leading Open Access research to many of the world's leading resource discovery tools, and from there onto the screens of researchers around the world.

Explore Strathclyde Open Access research content

Prediction of bulk density and molecular packing in model dendrimers with different chain stiffness

Carbone, Paola and Lue, Leo (2010) Prediction of bulk density and molecular packing in model dendrimers with different chain stiffness. Macromolecules, 43 (21). pp. 9191-9197. ISSN 0024-9297

Full text not available in this repository. (Request a copy from the Strathclyde author)

Abstract

By means of molecular dynamics simulations of model dendrimers, we analyze the dependence of the bulk density and molecular packing on the dendrimer molecular weight and intrinsic stiffness. We find that the density is consistently higher in flexible dendrimers than in the rigid ones with a large bending angle. The density values change slightly within the first two generations to reach a plateau. We interpret these results in terms of free volume, showing that the enhanced accessible free volume that characterizes the end-dendron monomers is counterbalanced by the higher number of internal monomers, leading to a constant bulk density for generations larger than three. The added stiffness affects the geometrical properties and the molecular rearrangement of the bulk, reducing the short-range local order and the packing efficiency favoring the dendrimer interpenetration. Our prediction for the bulk density matches and rationalizes experimental and previous all-atom simulation results.